PATTERN RECOGNITION

 Computer Science COMP - 644 B

 Computer Science COMP - 644 B
 First Midterm Test - February 9, 2004

1) Neural Networks (3 points)
(a) Define (1) lateral inhibition, (2) the Laplacian of a two-dimensional function.
(b) Design a neural network that exhibits lateral inhibition. Illustrate its output for a simple input of your choice. A one-dimensional light intensity function suffices.
(c) What is the relationship between lateral inhibition and the Laplacian?
2) Midpoint Smoothing (2 points)

Consider the midpoint smoothing algorithm for polygons in the plane. Prove or disprove that every non-simple polygon in general position has a non-simple descendant. (Recall that a polygon that is non-simple is self-crossing. A polygon is in general position if no three of its vertices are collinear.)

3) Medial Axis (2 points)

(a) Define the medial axis of a simple polygon.
(b) Draw the medial axis of the polygon shown. Describe the shape of each piece and where it starts and finishes.

4) Distance Transforms (3 points)

(a) Let \mathbf{P} be the digital pattern shown below. Find the distance transform $\mathrm{D}^{*}(\mathbf{P})$ using the ∞-Minkowski metric.
(b) A skeleton of P using $\mathrm{D}^{*}(\mathbf{P})$ is defined as the set of pixels each of which has the property that none of its 8 -neighbors has a value greater than its own.
Indicate which pixels form the skeleton of \mathbf{P}.
00000
00000
00000
00000
00000
000000000000
000000000000
000000000000
000000000000
000000000000

