The Maximum Gap Problem: An Algorithmic Application of the Pigeonhole Principle

Godfried Toussaint

The Maximum Gap Problem: An Algorithmic Application of the Pigeonhole Principle

A linear-time algorithm for computing the maximum gap allowing the constant time computation of floor functions in the model of computation.

Given a set *S* of n > 2 real numbers $x_1, x_2, ..., x_n$.

- 1. Find the maximum, *x-max* and the minimum, *x-min* in *S*.
- 2. Divide the interval [x-min, x-max] into (n-1) "buckets" of equal size $\delta = (x-max x-min)/(n-1)$.
- 3. For each of the remaining n-2 numbers determine in which bucket it falls using the floor function. The number x_i belongs to the kth bucket B_k if, and only if, $\lfloor (x_i x min)/\delta \rfloor = k$ -1.
- 4. For each bucket B_k compute x_k -min and x_k -max among the numbers that fall in B_k . If the bucket is empty return nothing. If the bucket contains only one number return that number as both x_k -min and x_k -max.

The Maximum Gap Problem: An Algorithmic Application of the Pigeonhole Principle

- 5. Construct a list L of all the ordered minima and maxima: L: $(x_1$ -min, x_1 -max), $(x_2$ -min, x_2 -max), ..., $(x_{(n-1)}$ -min, $x_{(n-1)}$ -max),
- Note: Since there are *n*-1 buckets and only *n*-2 numbers, by the Pigeonhole Principle, at least one bucket must be empty. Therefore the maximum distance between a pair of consecutive points must be at least the length of the bucket. Therefore the solution is not found among a pair of points that are contained in the same bucket.
- 6. In L find the maximum distance between a pair of consecutive minimum and maximum (x_i-max, x_j-min) , where j > i.
- 7. Exit with this number as the maximum gap.