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There has been considerable interest during the past 
2300 years in comparing different models of geometric 
computation in terms of their computing power. One 
of the most well-known results is Mohr's proof in 1672 
that all constructions that can be executed with 
straightedge and compass can be carried out with com- 
pass alone. The earliest such proof of the equivalence 
of models of computation is due to Euclid in his second 
proposition of Book I of the Elements, in which he es- 
tablishes that the collapsing compass is equivalent in 
power to the mode m  compass. Therefore, in the the- 
ory of equivalence of models of computation Euclid's 
second proposition enjoys a singular place. However, 
the second proposition has received a great deal of 
criticism over the centuries. Here it is argued that it is 
Euclid's early Greek commentators and more recent 
expositors and translators that are at fault, and that 
Euclid's original algorithm is beyond reproach. 

Introduction 

In the modern comparative study of geometric algo- 
rithms it is imperative first to define the models of com- 
putation, that is, the characteristics of the machine that 
will execute the algorithms [30]. A model of computa- 
tion specifies the number of processors used, whether 
they are used sequentially or in parallel, the primitive 
operations allowed, and the cost associated with each 
of these operations. For example, one of the preferred 
conceptually abstract models or ideal machines in 
which many geometric algorithms are compared is the 
Real RAM (Random Access Machine) [1], in which each 
unit of storage space is capable of holding a real num- 
ber of unlimited precision, and in which the primitive 
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operations that can be performed in one unit of time 
include the arithmetic operations consisting of addi- 
tion, subtraction, multiplication, and division, compar- 
isons between real numbers, reading from and writing 
into a storage location, as well as perhaps some more 



powerful operations, such as computing kth roots, trig- 
onometric functions, and other analytic functions. 
More controversial assumptions sometimes include 
the ceiling and floor functions. 

In classical constructive geometry, mathematicians 
have also been concerned with defining the models of 
computation, that is, the characteristics of the "ma- 
chine" that will execute the algorithms. Typical ma- 
chines that have been used in the past starting with 
Euclid include (1) the straightedge, (2) the ruler, (3) the 
collapsing compass, (4) the compass, (5) the fixed-aperture 
compass, (6) the compass with aperture bounded from 
above, and (7) the compass with aperture bounded from 
below, just to name a few [11, 17, 21, 34]. The collapsing 
compass deserves elaboration here. With the regular 
compass, one can open it, lock it at a chosen aperture, 
and lift it off the work space to some other location to 
draw a circle with the chosen radius. This operation 
cannot be done with a collapsing compass. The col- 
lapsing compass is, like the other machines, an ideal- 
ized machine which allows the compass to be opened 
to a chosen radius and a circle drawn, but no distance 
can be transferred. It is as if when the compass is lifted 
off the work space, it collapses and, thus, erases any 

J trace of the previous aperture made. 
Of course, more complicated machines can be ob- 

tained by combining sets of simple machines. For ex- 
ample, in Euclid's Elements he uses the straightedge and 
collapsing compass (the combination of machines 1 and 
3) as his model of computation. Attempts have also 
been made to specify the primitive operations allowed 
with each type of machine [23] and to design construc- 
tions that require fewer operations than did Euclid's 
original constructions. Another active area of research 
has been to analyze and compare different machine 
models in terms of their computational power [2, 4, 11, 
17]. For example, in 1672 Jorg Mohr [25] and in 1797 
the Italian geometer Lorenzo Mascheroni [24] indepen- 
dently proved that any construction that can be carried 
out with a straightedge and a compass can be carried 
out with a compass alone; and Jacob Steiner proved in 
1833 that the straightedge is equivalent in power to the 
compass if the former is afforded the use of the com- 
pass once [32]. To remind the reader that the straight- 
edge and compass are not yet obsolete computers, we 
should point out that the Mohr-Mascheroni result was 
strengthened as recently as in 1987 by Arnon Avron [2] 
at the University of Tel Aviv. 

The earliest proof of the equivalence of models of 
computation is due to Euclid in his second proposition 
of Book I of the Elements, in which he establishes that 
the collapsing compass is equivalent in power to the com- 
pass. Therefore, in the theory of equivalence of the 
power of models of computation, Euclid's second 
proposition enjoys a singular place. However, like 
much of Euclid's work and, particularly, his construc- 
tions involving many cases, his second proposition has 

received a great deal of criticism over the centuries. In 
this article, it is argued that it is Euclid's commentators 
and translators that are at fault, and that Euclid's orig- 
inal algorithm and proof are beyond reproach. 

Euclid's First Two Propositions According 
to Pedoe 

Pedoe [27] contains a lively discussion of Euclid's ele- 
ments of geometry applied to painting, sculpture, and 
architecture throughout recent history. To illustrate 
Euclid's method, he presents the first two propositions 
of Book I of his Elements. Earlier in the book Pedoe 
actually has a completely different algorithm and proof 
of Proposition 2, to which we shall return at the end of 
this article. However, at this later point in the book he 
states that "it is of interest to read how it appears in 
Euclid." Whereupon the following algorithms and 
proofs of correctness are presented. 

PROPOSITION 1. On a given finite straight line to con- 
struct an equilateral triangle. 
Algorithm 1: 
Input: Let AB be the given finite straight line. (Thus, it 
is required to construct an equilateral triangle on the 
straight line AB.) See Figure 1. 

D E 

Figure 1. Euclid's figure for the proof of Proposition 1. 

Begin 
Step 1: With centre A and distance AB let the circle BCD 
be described. 
Step 2: With centre B and distance BA let the circle ACE 
be described. 
Step 3: From the point C, in which the circles cut one 
another, to the points A, B let the straight lines CA, CB 
be joined. 
End 
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Proof of Correctness: 
Now, since the point A is the centre of the circle CDB, 
AC is equal to AB. Again, since the point B is the centre 
of the circle CAE, BC is equal to BA. And things which 
are equal to the same thing are also equal to one an- 
other; therefore, CA is also equal to CB. Therefore, the 
three straight lines CA, AB, BC are equal to one an- 
other. Therefore, the triangle ABC is equilateral; and it 
has been constructed on the given finite straight line 
AB. Being what it was required to do. 
End of Proof 

Of course, neither Euclid nor Pedoe uses the words 
algorithm, input, begin, and end. Neither do they use the 
phrases proof of correctness nor end of proof, nor do they 
label separate chunks of the algorithm with the word 
Step such-and-such. However, early Latin manuscripts 
do preface the construction by the words exempli causa 
and the proof by probatio eius. We include these well- 
known terms found in modern computer science for 
clarity of layout, and to recall that these divisions did 
appear in essence in at least the earliest Arab and Latin 
translations of Euclid's Elements. The important thing 
is that Euclid always gave the algorithm first and the 
arguments to substantiate the correctness of the algo- 
rithm immediately afterward. Even today, too many 
writers publish geometric algorithms without includ- 
ing a proof of correctness, in spite of the many geo- 
metric algorithms that have been found to be incorrect 
[37]. These authors could certainly take a lesson here 
from Euclid. Sometimes, as we shall see below, the 
algorithms in the Elements include unnecessary steps 
for obtaining the solution, but these steps have the 
benefit of simplifying the ensuing proof of correctness. 

Euclid also made use of another common practice in 
modem computer science: subroutines. In the algorithm 
of his second proposition described next, he uses Al- 
gorithm I above. Below we give Pedoe's description of 
Euclid's construction. 
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Figure 2. Pedoe's figure for proving Euclid's 
Proposition 2. 

C 

Exit with AL as the solution. 
End 
Proof of Correctness: 
Then, since the point B is the centre of the circle CGH, 
BC is equal to BG. Again, since the point D is the centre 
of the circle GKL, DL is equal to DG, and in these DA 
is equal to DB. Therefore, the remainder AL is equal to 
the remainder BG. But BC was also proved equal to BG. 
Therefore, each of the straight lines AL, BC is equal to 
BG; and things which are equal to the same thing are 
also equal to one another. Therefore, AL is also equal 
to BC. Therefore, at the given point A the straight line 
AL is placed equal to the given straight line BC. Being 
what it was required to do. 
End of Proof 

PROPOSITION 2. To place at a given point (as an extrem- 
ity) a straight line equal to a given straight line. 
Algorithm P [Pedoe's version]: 
Input: Let A be the given point, and BC the given 
straight line. (Thus, it is required to place at the point 
A (as an extremity) a straight line equal to the given 
straight line BC.) See Figure 2. 
Begin 
Step 1: From the point A to the point B let the straight 
line AB be joined. 
Step 2: On AB (using Algorithm 1) let the equilateral 
triangle DAB be constructed. 
Step 3: With centre B and distance BC let the circle CGH 
be described. 
Step 4: With centre D and distance DG let the circle GKL 
be described. 

We remark here that Pedoe's figure, shown in Figure 
2, is considerably different from those in other sources 
on Euclid such as Heiberg [16], Heath [15], and Dijk- 
sterhuis [13] for example. Much more serious, how- 
ever, is the fact that Algorithm P given by Pedoe is 
incorrect! It is clear that for a solution to be obtained by 
Algorithm P, it is crucial that the circle centred at B 
with radius BC intersect DB at G. Otherwise, G is un- 
defined and the rest of the algorithm makes no sense. 
Now consider what happens when the length of BC is 
greater than the distance from A to B. Clearly, the 
circle centred at B with radius BC will completely en- 
close triangle ABD and its interior and the construction 
fails! In modem parlance, for such an input the algo- 
rithm crashes. 
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Euclid's Construction According to 19th-, 18th-, 
and 17th-Century Scholars 

During the 19th century, along with more than 700 
editions of The Elements, there was a flurry of textbooks 
on Euclid's Elements for use in the schools and colleges. 
A sample of several of these books [14, 22, 33, 36] 
yields a common (apart from notation) algorithm and 
illustrative figure for Euclid's second proposition. 
However, both the algorithm and figure are quite dif- 
ferent from Pedoe's. Consider then the algorithm ac- 
cording to one of these sources [14]. 

PROPOSITION 2. From a given point to draw a straight 
line equal to a given straight line. 
Algorithm 19C [Popular 19th-century version]: 
Input: Let A be the given point and BC the given 
straight line. (It is required to draw from the point A a 
straight line equal to BC.) See Figure 3. 
Begin 
Step 1: Join AB. 
Step 2: On AB, describe an equilateral triangle DAB. 
Step 3: From centre B, with radius BC, describe the 
circle CGH. 

"Step 4: Produce DB to meet the circle CGH at G. 
Step 5: From centre D, with radius DG, describe the 
circle GKF. 
Step 6: Produce DA to meet the circle GKF at F. Then AF 
shall be equal to BC. 
End 

Figure 3. Popular 19th-century figure for the proof of 
Euclid's Proposition 2. 
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This algorithm is certainly an improvement over Pe- 
doe's algorithm as it appears to work correctly for 
some input configurations whether  BC is greater than 
or less than BA. Nevertheless the algorithm suffers 
from ambiguous statements. Step 4 asks us to produce 
(extend in length) DB to meet the circle CGH at G, but 
it does not tell us in which direction (emerging from D 
or from B) to produce DB, and certainly in either di- 
rection we are bound to meet the corresponding circle 
constructed in Step 3. Figure 3 shows one possible 
case, but had we produced DB in the direction from B 
to D instead of the direction shown we would have 
obtained a completely different intersection point G. A 
similar problem exists with Step 6. 

The ambiguities observed in the algorithms de- 
scribed in [14] and [33], which are exemplified here as 
Algorithm 19C, are absent in the exposition by Taylor 
[35], if not in the body of the algorithm at least in the 
subsequent discussion, where it is indicated that we 
are free to choose one or the other alternative as in Step 
1. It is therefore instructive to examine his algorithm 
and accompanying discussion in more detail. 

PROPOSITION 2. From a given point to draw a straight 
line equal to a given straight line. 
Algorithm T [Taylor's version]: 
Input: Let A be the given point and BC the given 
straight line. (It is required to draw from the point A a 
straight line equal to BC.) Refer to Figure 4. 
Begin 
Step 1: Draw AB, the straight line from A to one of the 
extremities of BC. 
Step 2: On it, construct an equilateral triangle DAB. 
Step 3: With B as centre and BC as radius, describe the 
circle CEF, meeting DB (produced if necessary) at E. 

Figure 4. Illustrating Taylor's version of Euclid's 
Proposition 2. 
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Step 4: With D as centre and DE as radius, describe the 
circle EGH, meeting DA (produced if necessary) at G. 
Then AG is the straight line as required. 
End 

Note that Taylor is careful to add in Steps 3 and 4 the 
explicit if statements that DB and DA are to be produced 
if necessary. Therefore we presume that if the con- 
struction circle CEF intersects the sides of equilateral 
triangle ABD, then the extension of DA need not be 
carried out. Unlike the previous 19th-century geome- 
try books, Taylor follows the proof of Proposition 2 
with the following interesting discussion. 

It is assumed in this proposition that the straight line DB 
intersects the circle CEF. It is easily seen that it must in- 
tersect in two places. 
It will be noticed that in the construction of this proposi- 
tion there are several steps at which a choice of two alter- 
natives is afforded: (1) we can draw either AB or AC as the 
straight line on which to construct an equilateral triangle: 
(2) we can construct an equilateral triangle on either side of 
AB: (3) if DB cut the circle in E and I, we can choose either 
DE or DI as the radius of the circle which we describe with 
D as centre. 
There are therefore three steps in the construction, at each 
of which there is a choice of two alternatives: the total 
number of solutions of the problem is therefore 2 x 2 x 2 
or eight. 

We see that Taylor's way of dealing with the ambi- 
guities discussed above is to explicitly acknowledge 
that there are eight different cases to Euclid's proposi- 
tion that depend on how the construction is carried 
out, that we are free to choose any one of these eight 
paths through the implied decision tree, and that the 
sides DB and DA need not be produced if not neces- 
sary. In light of this classification, let us follow down 
one path of these choices on the input configuration 
illustrated in Figure 4, where it is assumed that the 
length of CB is greater than the length of CA. In our 
first choice we, therefore, select AB as the segment on 
which to construct our equilateral triangle. Our second 
decision will be to construct the triangle on the side 
shown in Figure 4. Now because the circle CEF does 
not intersect the triangle, we extend DB, which cuts 
the circle at the two points E and I. According to Tay- 
lor, we may now choose either DE or DI as the radius 
of the circle which we describe with D as centre. Let us 
choose DI. Now, this circle with D as centre intersects 
DA at G', playing the role of G in his algorithm, and, 
therefore, according to Step 4, DA need not be pro- 
duced to G. According to the algorithm, therefore, the 
solution is given by AG' which is clearly incorrect, be- 
cause AG' is smaller than AB, whereas BC is greater 
than AB, by assumption. Therefore, although the am- 
biguities of Algorithm 19C have been removed by Tay- 
lor, Algorithm T does not always yield the correct so- 
lution on a given line-point configuration, depending 
on which construction strategy is applied. 

Furthermore, Algorithm T suffers from an addi- 
tional minor bug not even present in Algorithm 19C. 
Note that Step 1 in Algorithm 19C does not offer 
choice. Algorithm T asks that A be connected to one of 
the extremities of BC, one that we are free to choose. 
However,  if we choose to connect A to C (rather than 
B as in Taylor's figure), then it is impossible to execute 
Step 2, and the algorithm crashes. 

Another author, Lardner [22], also follows his pre- 
sentation of an ambiguous algorithm identical to Al- 
gorithm T with a discussion of how the student should 
be careful about different cases arising from the vari- 
eties of different input configurations. In his own 
words, 

The different positions which the given right line and the 
given point may have with respect to each other, are apt to 
occasion such changes in the diagram as to lead the stu- 
dent into error in the execution of the construction for the 
solution of this problem. 
Hence it is necessary that in solving this problem the stu- 
dent should be guided by certain general directions, which 
are independent of any particular arrangement which the 
several lines concerned in the solution may assume. If the 
student is governed by the following general directions, 
no change which the diagram can undergo will mislead 
him. 

Lardner then proceeds to present six general rules 
concerning what can and cannot be done to ensure 
that Algorithm T works correctly on all inputs. This 
discussion includes a case analysis of construction 
strategies. Unlike Taylor [35], it does not allow DA and 
DB to be extended in either direction, but  insists that 
they be extended through the base of the constructed 
triangle, thus concluding that the solution to Euclid's 
second proposition has four cases rather than Taylor's 
eight. Another general rule that Lardner insists should 
be followed is that the centre of the circle constructed 
in Step 3 should lie at the extremity of BC connected to 
A in Step 1, thus avoiding one of Taylor's problems. 

Another variation occurs in a much earlier Scottish 
book on Euclidean geometry published in 1831 by John 
Playfair [29], which has a variant of Algorithm 19C. In 
this book, we are asked to extend DA and DB to E and 
F, respectively, and thus the ambiguity of Algorithm 
19C is also present here. However,  unlike Algorithm 
19C or Algorithm T, the algorithm in [29] first per- 
forms the extensions and subsequently constructs the 
circles. 

We close this section with a note on textbooks of the 
18th and 17th centuries. In these two centuries com- 
bined the number of editions of Euclid's Elements pub- 
lished was less than half of the number for the 19th 
century, about 325 and 280 in the 18th and 17th cen- 
turies, respectively. It is also much more difficult to 
find copies of these earlier editions. I have held in my 
hands only two editions from the 18th century [5, 38] 
and one from the 17th century [10], having found all 
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three in the special collection of the library at Queens 
University in Kingston, Ontario. The 1705 manuscript 
by Isaac Barrow (from Trinity College, Cambridge) has 
the additional distinction (according to the claim on its 
front page) of being the first English copy translated 
from Latin. What is worth noting about the algorithms 
in these texts is that (1) they are identical to each other; 
(2) like Algori thm 19C, they are ambiguous; but (3) 
unlike all other algorithms I have encountered,  they 
begin not by connecting point A to one of the end 
points of segment  BC but  by constructing a circle of 
radius BC centred at one of the end points of BC. Then, 
in the second step, point  A is joined to the end point 
selected as the centre in the previous step. Note that 
this ordering circumvents the problem that Algorithm 
T has with Steps I and 2, and furthermore allows us to 
ignore Lardner's caveat intended to resolve it. 

Euclid's Construction According to Gerard of 
Cremona and Peyrard 

One is naturally led to the question: Which of all these 
algorithms is the one Euclid originally proposed? It 

"would be easy to answer this question by looking up 
Euclid's original manuscript.  Unfortunately, history 
has made this impossible. In the year 332 B.c. Alex- 
ander the Great, at the age of 24, conquered Egypt and 
founded the city of Alexandria. When, after conquer- 
ing much of the rest of the world, he died at the age of 
33, his generals divided up the empire. In this way 
Egypt fell into the hands  of Ptolemy I in 306 B.c. 
Ptolemy II created the University of Alexandria, which 
became, by virtue of its excellent scholars (including 
Euclid) and its impressive library (three-quarters of a 
million books including Euclid's original version of The 
Elements), the intellectual and scientific centre of the 
world. In 48 B.c. Julius Caesar occupied Alexandria 
and intended to carry a large portion of the library with 
him back to Rome. The academic communi ty  held a 
demonstration which was quickly quelled by Caesar's 
army. In the fighting many of the books were burned. 
More books were burned  during later Egyptian revolts 
in 272 A.D. and 295 A.D. In the 4th and 5th centuries, 
zealous Christian bishops began to persecute the pa- 
gan writers (mathematicians) and their books. Bishop 
Theophilus in 391 A.D. led a Christian mob and de- 
stroyed the Temple of Serapis which housed  many of 
the remaining books. The last mathematician alive in 
Alexandria, a woman  by the name of Hypatia, was 
hacked to pieces by Bishop Cyril. Finally, the Arabs 
invaded Egypt in 646 A.D., and General Amr ibn-al-As 
burned the remaining books, allegedly because [6] "if 
the books agreed with the Koran they were superflu- 
ous; if they disagreed they were pernicious." In short, 
in all likelihood Euclid's original algorithm went  up in 
smoke. 

In spite of the criticism often directed at Euclid, one 
may find it difficult to believe that he could have been 
guilty of such oversight as in the versions of his algo- 
r i thm exhibited so far. However,  established authori- 
ties on Euclid, such as Heiberg [16], Heath [15], and 
Dijksterhuis [13], have a significantly different algo- 
rithm. The figure in these three works is given in Fig- 
ure 5, and the algorithm is given below. We omit the 
proof of correctness as it is exactly the same as that 
given by Pedoe. 
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Figure 5. Euclid's figure for the proof of Proposition 2 
according to Heath. 

PROPOSITION 2. To place at a given point (as an extrem- 
ity) a straight line equal to a given straight line. 
Algorithm Euclid [Heath's version]: 
Input: Let A be the given point, and BC the given 
straight line. (Thus, it is required to place at the point  
A (as an extremity) a straight line equal to the given 
straight line BC.) See Figure 5. 
Begin 
Step 1: From the point A to the point  B let the straight 
line AB be joined. 
Step 2: On AB (using Algori thm 1) let the equilateral 
triangle DAB be constructed. 
Step 3: Let the straight lines AE, BF be produced in a 
straight line with DA, DB. 
Step 4: With centre B and distance BC let the circle CGH 
be described. 
Step 5: With centre D and distance DG let the circle GKL 
be described. 
Exit with AL as the solution. 
End 
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Note that in Figure 5 the length of BC is indeed 
larger than the distance between A and B and Pedoe's 
version of Euclid's algorithm would not work in this 
case. However, for unknown reasons (I will offer a 
conjecture later), Pedoe leaves out Step 3 in the above 
algorithm. This crucial step in Euclid's algorithm con- 
structs the extensions of DA and DB in directions E and 
F, respectively, thus ensuring that, whether  or not the 
length of BC is larger than the distance between A and 
B, the algorithm continues to "execute," and the figure 
remains the same in the sense that point G exists and 
lies on BF. Note the difference between the manner in 
which DA and DB are to be produced in Algorithm 
Euclid as compared to Algorithm 19C and Algorithm 
T. In the latter two algorithms, the ambiguous instruc- 
tions state that the sides of the equilateral triangle DA and 
DB are to be produced. In Algorithm Euclid, on the other 
hand, the statement in Step 3 concerning the extension 
of DA and DB states, "Let the straight lines AE, BF be 
produced in a straight line with DA, DB.'" In other words, 
the extensions are to be collinear with (in a straight line 
with or in the direction of) DA and DB. No room is left 
here for choosing the direction of the extensions of DA 
and DB as in Algorithm 19C. 

At this point, one may wonder about the authentic- 
ity and correctness of the accounts of Heiberg [16], 
Heath [15], and Dijksterhuis [13]. The Greek text by 
Heiberg is considered to be the definitive edition. It 
consists of portions taken from different Greek manu- 
scripts spanning the 9th to 12th centuries and consid- 
ered by philologists to be the most authentic. There 
also exist several interesting Latin manuscripts which 
are translations of Arabic manuscripts. We may peruse 
the first printed edition of the Latin translation of the 
Arabic (Ishaq-Thabit) version of Euclid's Elements, be- 
lieved to have been made by the monk Gerard of Cre- 
mona in Toledo during the 12th century [8] following 
its discovery in Baghdad. 

We find that apart from the letters E and F in Heath 
being replaced in [8] by L and G, respectively, the 
algorithms and proofs of correctness found in [13, 15, 
16] are identical to those in the 12th-century manu- 
script. This 12th-century algorithm is a Latin transla- 
tion of an Arabic translation of a Theonian Greek 
manuscript. In fact, all Arabic translations are believed 
to descend from the recension by Theon of Alexandria. 

Anyone who has played the translation game may 
wonder how this version compares with early Greek 
manuscripts with respect to the crucial Step 3. In an- 
other 12th-century Sicilian Latin translation (of un- 
known authorship) of Euclid's Elements made directly 
from the Greek [9], Step 3 is stated as follows: 

Educantur in directo rectis DA et DB recte AE et BF. 

This translates to "Lead forth the straight lines AE and BF 
in a straight line with (in the direction of) the straight lines 
DA and DB" and is, thus, in agreement with the Gerard 

of Cremona version and Heiberg's definitive edition. 
A final piece of evidence that Algorithm Euclid de- 

scribed above is indeed Euclid's is the so-called manu- 
script P, the Vatican manuscript No. 190. Until 1804, all 
manuscripts of Euclid's Elements were believed to be 
descended from Theon's 4th-century recension [7]. 
When Napoleon conquered Italy, he stole from the 
Vatican a Greek manuscript (No. 190) of Euclid's Ele- 
ments which he kept in the King's Library in Paris. F. 
Peyrard, a professor at the Lyc6e Bonaparte, wanted to 
write a definitive French version of the Elements using 
the best Greek manuscripts at his disposal, and to- 
wards that end obtained access to the King's Library. 
There he found manuscript No. 190, and to his aston- 
i shment  discovered he had  in his hands  a pre- 
Theonian 10th-century manuscript. In the meantime 
the Allied Forces defeated Napoleon and forced France 
to return all stolen works of art. At the request of the 
French government, the Pope made Peyrard a happy 
man by granting an extension of the return date of the 
manuscript, thus giving him enough time to finish his 
translation [28]. In Peyrard's manuscript, which he 
emphasizes is a literal translation, the crucial Step 3 is 
written as "Menons les droites AE, BZ dans la direction de 
DA, DB," and is, thus, in agreement with Algorithm 
Euclid described above. 

Cases in Constructions and Proofs 

The above discussion brings up naturally the general 
question of the analysis of cases in Euclid's construc- 
tions, modern computational geometry, and geometric 
proofs in general. When we talk about cases today we 
generally mean equivalence classes of input configura- 
tions, rather than instances of the construction se- 
quence resulting from a set of choices made as a result 
of the ambiguities of the algorithm's description, as are 
the case classifications in Taylor [35] and Lardner [22]. 
An algorithm must be specified unambiguously and 
should execute correctly for all inputs it was designed 
to handle. 

Much criticism has been heaped on Euclid over the 
past two thousand years for his alleged sloppiness in 
constructions and proofs concerning cases. For one 
thing, he has been accused of giving proofs of correct- 
ness that depend severely on the figure accompanying 
the proof. Thus, Bertrand Russell [31]: 

A valid proof retains its demonstrative force when no fig- 
ure is drawn, but very many of Euclid's earlier proofs fail 
before this test . . .  The value of his work as a masterpiece 
of logic has been very grossly exaggerated. 

Again, in the words of William Dunham [12]: 

Admittedly, when he allowed himself to be led by the 
diagram and not the logic behind it, Euclid committed 
what we might call a sin of omission. Yet nowhere in all 
465 propositions did he fall into a sin of commission. None 
of his 465 theorems is false. 
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Finally, in the words  of Felix Klein [20]: 
Euclid. . .  always had to consider different cases with the 
aid of figures. Since he placed so little importance upon 
correct geometric drawing, there is real danger that a pupil 
of Euclid may, because of a falsely drawn figure, come to 
a false conclusion. 
A proposition that has a plethora of cases and that 

has been the subject of much criticism of Euclid is in 
fact Proposition 2, the topic of this article. It will be 
argued here using this proposition as a "case" study 
that much of the criticism of Euclid's case analysis 
stems from a lack of understanding of his original work 
due in part to the writings of the early Greek commen- 
tators of the Elements such as Heron and Theon of Al- 
exandria and others reviewed by Proclus [26] in the 5th 
century, and exacerbated by a 12th-century Latin 
translation of an Arabic manuscript by Adelard of Bath 
[7] and many English scholars of the 19th century. Fur- 
thermore, if we judge the original algorithm and proof 
of correctness of Euclid's Proposition 2 using today's 
highest standards in the field of computational geom- 
etry Euclid deserves praise for his brilliance. 

Return then to Euclid's second proposition: To place 
at a given point (as an extremity) a straight line equal to a 
given straight line. Clearly, an algorithm for carrying out 
this task has to execute, that is, be well defined for all 
inputs, that is, for all possible line segments BC and all 
points A no matter how they are positioned with re- 
spect to each other in the plane. Furthermore, unless 
the algorithm is designed to work only for inputs in 
general position, it should also be able to handle singu- 
larities such as when point A lies on the segment BC or 
A is equidistant from B and C. Similarly, a proof of 
correctness must establish that in all situations the al- 
gorithm will yield the correct solution. 

Euclid had the habit, as is well illustrated by Figure 
5, of including only one figure to illustrate the con- 
struction and proof. A reader may thus wonder,  on 
stepping through the algorithm on the given figure, 
whether the same steps would work on a completely 
different figure. The same reader may even be skepti- 
cal as to whether the arguments in the proof of cor- 
rectness would carry over with the same letters used as 
labels of crucial points derived during the construc- 
tion. This, in fact, appears to have been the reaction of 
early Greek commentators of the Elements, who criti- 
cized Euclid for leaving out cases that they discovered 
missing and then supplied proofs of their own. An 
in-depth commentary of Euclid's elements and subse- 
quent criticisms made against it was written in the 5th 
century by Proclus [26]. Proclus himself does not usu- 
ally criticize Euclid, and on several occasions actually 
comes to his defense. In the words of Glenn Morrow 
[26], 

When in the proof of a theorem Euclid uses only one of 
two or more possible cases, as is his custom, Proclus will 
often prove one or more of the omitted cases; sometimes 

he simply calls attention to them and recommends that his 
readers, "for the sake of practice," prove them for them- 
selves. Sometimes he gives an alternative proof of a theo- 
rem devised by one of his predecessors for the obvious 
purposes of showing the superior elegance or appropri- 
ateness of Euclid's demonstration. 

Indeed one can conjure up many special cases of an 
initial configuration of point A and line segment BC. 
For example: Case 1: A may lie on the line collinear with 
BC, or Case 2: A may lie on one side of the line collinear 
with BC. In Case 1, A may lie on the line segment BC 
(Case 1.1) or off the line segment BC (Case 1.2). If A lies 
on BC, then in Case 1.1.1 it may lie on an end point of 
BC or in Case 1.1.2 on the interior of BC, and in the 
latter case we have two more cases depending on 
whether A is closer to B or closer to C. In Case 1.2, 
where A lies off segment BC, A could be closer to B 
(Case 1.2.1) or to C (Case 1.2.2). Furthermore, Case 
1.2.1 divides into two more cases depend ing  on 
whether the distance between A and B is greater than 
or less than the distance between B and C. Case 2 in 
which A lies off the line coUinear with BC can also be 
divided into cases using a variety of criteria. For exam- 
ple, we might consider two cases depend ing  on 
whether the line segment BC lies in the interior (Case 
2.1) or the exterior (Case 2.2) angle that triangle ABD 
makes at D. Finally, each of these two cases deter- 
mines two more cases depending on whether the dis- 
tance between A and B is greater than or less than the 
distance between B and C. 

Some of the above cases (but certainly not all!) were 
discussed by the Greek commentators and are in- 
cluded in the work of Proclus. Usually a proof that 
Euclid's algorithm worked correctly was then provided 
for the particular case at hand. Sometimes the actual 
algorithm given by Eudid was changed to handle the 
special case. For example, for a particular input con- 
figuration in Case 2.1 with the distance between A and 
B less than the distance between B and C, Proclus ob- 
jects to Euclid's algorithm because line segment BC 
"gets in the way" of the construction of triangle ABD 
above segment AB (see Fig. 6). In the words of Proclus, 
"'for there is not room." Heath notes that Heron of 
Alexandria circa 100 A.D., in his commentary on the 
Elements, also sometimes used constructions different 
from Euclid's to circumvent objections of this type. The 
algorithm of Proclus for this particular case follows (see 
Fig. 6). 

Begin 
Step 1: Let a circle be drawn with centre at B and dis- 
tance BC. 
Step 2: Let the lines AD and BD be produced to F and G. 
Step 3: With centre at D and distance DG let the circle 
GE be described. 
[Exit with AE as the solution.] 
End 
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Figure 6. Proclus's figure for the proof of a subcase of 
Case 2.1 of Proposition 2. 

Note how Proclus has changed the clear line- 
extension statements of Euclid's algorithm to the am- 
biguous statements (let the lines AD and BD be pro- 
duced to F and G) found in the 19th-century accounts, 
and that the correctness of the construction is made to 
depend on the figure! 

Another fascinating manuscript is an Arabic book 
titled On the Resolution of Doubts in Euclid's Elements and 
Interpretation of Its Special Meanings written in 1041 A.D. 
by Ibn al-Haytham. A copy of this book made in 1084 
A.D. was found in the University of Istanbul Library 
[18]. As the title suggests, this is not a translation of the 
Elements but a discussion about well-known criticisms 
of Euclid's work. In discussing Euclid's second prop- 
osition al-Haytham treats four basic cases in terms of 
input: (1) point A is either B or C, (2) A lies on the line 
segment BC, (3) A lies on the line passing through BC, 
and (4) A lies outside the line passing through BC. In 
addition to these, he has a very strange case that does 
not appear to have been mentioned anywhere else, 
and this is the case when  the line segment BC and the 
point A are separated by a valley or a river so that the 
line joining the points A and B cannot be drawn! His 
solution to this last case is most puzzling, for he writes 
that the way to handle this case is to measure the line 
segment and redraw it in the neighborhood of the 
point, after which Euclid's procedure is then applied! It 
would appear that Ibn al-Haytham was not lacking a 
sense of humor  in his mathematical writings. 

Eucl id's  A l g o r i t h m  R e c o n s i d e r e d  

It is clear from the above discussion that Euclid's fol- 
lowers were concerned that perhaps Euclid's algorithm 
and proof of correctness did not hold for all possible 
configurations of the input to the problem. I will argue 
that the commentators themselves succumbed to the 
fallacy of "going by the figure" even more than Euclid 
himself, and that they missed the essence, semantics, or 
deep structure behind Euclid's proof. 

First, we should remember that when cases did in 
fact exist, Euclid used figures to illustrate a construction 
and proof rather than make a case statement. In the 
words of Heath, 

To distinguish a number of cases in this way was foreign 
to the really classical manner. Thus, as we shall see, Eu- 
clid's method is to give one case only, for choice the most 
difficult, leaving the reader to supply the rest for himself. 
Where there was a real distinction between cases, suffi- 
cient to necessitate a substantial difference in the proof, 
the practice was to give separate enunciations and proofs 
altogether. 

This is, indeed, the social convention followed even 
today in computational geometry, where the phrase 
"the remaining cases can be proved in a similar way"  
is seen in almost every published paper in the most 
scholarly of journals. 

I conjecture, though, that Euclid saw no cases in 
Proposition 2 because fundamentally there are not 
any. Furthermore, if the reader will follow through 
Euclid's original algorithm in all the possible "fabri- 
cated" cases enumerated in the previous section, he or 
she will find that the algorithm is well defined in the 
modern sense and will execute correctly and terminate 
with the correct solution. Furthermore, the proof of 
correctness also follows through. This cannot be said 
of any of the subsequent algorithms and proofs offered 
by Heron, Proclus, and the other Greek commentators 
of Euclid, nor the 19th-century English scholars. It 
should be mentioned here that one logical (out-of- 
context) situation consists of Case 1.1.1 in which the 
point A lies at one end point of segment BC. Clearly, in 
this pathological situation an equilateral triangle can- 
not be constructed on AB and the algorithm would be 
undefined and fail to execute. However, the purpose 
of the problem is to transfer a distance. If A coincides 
with either B or C, then the answer, namely, segment 
BC, is already known at the start. Therefore, the algo- 
rithm is clearly intended to work for all points A on the 
plane except B and C. 

The reader may experience an interesting effect 
upon actually carrying out Euclid's construction and 
proof for all the cases enumerated above, and that is 
the Eureka experience in which the essence, semantics, or 
deep structure behind Euclid's construction is made 
manifest. Once this happens, it is transparently clear 
that Euclid's algorithm and proof of correctness are 
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valid for all cases one could possibly imagine. Funda- 
mentally there are indeed no cases. 

It is difficult to grasp the essence of the algorithm- 
proof by fixing an input configuration and then ana- 
lyzing variations in constructions as in the work of the 
Greek commentators. However,  the following "trick" 
makes the essence " jump out of the page at you."  We 
fix the construction instead and for this fixed construc- 
tion we "look" at all possible input configurations. The 
crucial part of Euclid's construction (missing in Pedoe's 
algorithm [27] and missed by most of Euclid's follow- 
ers) is the cone determined by the rays DE and DF and 
making an angle of 60 ~ at D. This cone is implicitly 
constructed by the resulting concatenation of the equi- 
lateral triangle DAB and the extensions constructed in 
Step 3 from A to F and B to E. This cone is as large as 
desired and always subtends 60 ~ Consider such a cone 
as fixed in space and refer to Figure 7. Now point A 
must always lie on one ray DF. Also, line segment BC 
must always have its end point B on the other ray DE. 
With the compass anchored on B, Euclid's construction 
first marks off a point G on BE such that BG equals BC. 
Then with the compass anchored on D, it marks off a 
point L on AF such that DL equals DG. It is clear that 

"for all possible configurations of points A and line seg- 
ments BC the construction is valid. Variation in the 
distance between A and B does not change the essence 
of the proof. Furthermore, all possible relative posi- 
tions of segment BC with respect to point A retain their 
property of cutting BE at G. It does not matter whether 
BC is greater than, less than, or equal to AB. Neither 
does it matter if C lies on AB or DB, or for that matter 
if it coincides with point A or D! Therefore, the algo- 
rithm is well defined and executes in all possible cases. 

D C 

C 

C 

F 
Figure 7. Illustrating the proof of Euclid's Proposition 2 
for all eases. 

Because in all cases DB equals DA, it follows that the 
algorithm yields the correct solution in all cases as 
well. 

This then is the logic behind Euclid's proof; and, we 
might add that, Bertrand Russell [31] and Dunham [12] 
notwithstanding, it holds without the need of a figure. 
We see at once Euclid's brilliance in the extension of 
DA and DB in the directions of A and B to create the 
cone with apex at D rather than in the direction of D as 
done by Proclus, for example. It is also easy to see with 
the aid of this cone that indeed there are no proper 
cases here at all. The cases fabricated and considered 
by Euclid's commentators are artifacts of a lack of un- 
derstanding of the underlying logic which, it is conjec- 
tured, Euclid had in mind. In light of the culturally 
established belief held by so many that Euclid's proofs 
only hold for certain cases, together with the fact that 
almost all modern versions of the construction are ei- 
ther ambiguous or downright incorrect, it is easy to 
understand why Pedoe [27] picks only one such case 
and claims to give Euclid's original proof although it is 
missing the crucial construction of the cone mentioned 
above. 

We close this section with a conjecture as to how it 
came about that so many of the English textbooks con- 
tain an incorrect algorithm for Euclid's second propo- 
sition. I believe the answer may lie in the famous Latin 
translation (of an Arabic manuscript by A1-Hajjaj) due 
to Adelard of Bath [7]. 

Among the most  wel l -known medieval  English 
translators of Euclid's Elements was Adelard of Bath in 
the 12th century. Actually, Adelard of Bath's name is 
associated with three distinct versions of the Elements; 
according to Busard [7], it was version II "that became 
the most popular of the various translations of the El- 
ements produced in the 12th Century and apparently 
the one most commonly studied in the schools." Fur- 
thermore, this version is apparently the least authen- 
tic. In the words of Busard, "not  only are the enunci- 
ations differently expressed but  the proofs are very 
often replaced by instructions for proofs or outlines of 
proofs." 

Adelard of Bath writes Step 3 as follows: 

Protrahanturque linee DA et DB directe usque ad L et G. 

His actual letters are different and are here substi- 
tuted to match those of Figure 5 for ease of discussion. 
As a minor aside, there is an error (probably typo- 
graphic?) in this manuscript, that is, L and G are actu- 
ally reversed. More seriously, E and F are nonexistent, 
as are the references to producing the lines AF and BE, 
and the literal translation reads "'Draw forward (ex- 
tend) lines DA and DB until L and G." The sentence 
that pervades the English textbooks reads, "Produce 
lines DA and DB until L and G.'" Thus, one possibility 
is that Adelard of Bath is responsible for introducing 
the error. To be sure, it is known that in the 4th- 
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century Theon of Alexandria's recension of the Ele- 
ments involved altering the language in some places 
and sometimes supplying alternative proofs; and ac- 
cording to Busard [7] all the manuscripts of the Ele- 
ments known until the 19th century were derived from 
Theon's text. Is Theon the culprit here? Adelard of 
Bath translated his manuscript  from the A1-Hajjaj 
manuscript in Arabic; one may wonder  if AI-Hajjaj is to 
blame. However, it is generally considered that the 
Arabic manuscripts are quite trustworthy, and other 
Latin translations of Arabic manuscripts, such as that 
of Gerard of Cremona, have a correct algorithm. The 
finger seems to point in the direction of Adelard of 
Bath. 

20th-Century  Algorithms 

For the sake of comparison, contrast, and complete- 
ness, we offer in this section an alternative modern 
construction that is fundamentally different from all 
those considered by Euclid, Heron, Proclus, and the 
other Greek and subsequent commentators, as well as 
the plethora of 19th- and early 20th-century textbook 
writers. It is based on the notion of mirror symmetry. 

Recall that in 1672 Jorg Mohr and in 1797 the Italian 
geometer Lorenzo Mascheroni independently proved 
that any construction that can be carried out with a 
straightedge and a compass can be carried out with a 
compass alone. The reader may wonder  how on earth 
we can draw a line segment of length BC with one 
extremity at A without using a straightedge. Strictly 
speaking, we cannot, and therefore in constructions of 
a line or line segment with compasses alone, we re- 
quire only that two points on the line or the two end 
points of the line segment be specified. Thus, we are 
actually simulating a line or line segment by two points. 
In this sense it is more appropriate to state the Mohr- 
Mascheroni theorem as: any construction that can be car- 
ried out with a straightedge and a compass can be simulated 
with a compass alone. The above constructions use both 
a straightedge and a compass. It is fitting to end this 
discussion with a construction that uses a compass 
only. We present the one described in [17] which is 
also the first construction presented in Pedoe [27]. 

Algorithm CO ]Compass Only version]: 
Input: Let A be the given point and BC the given 
straight line. [Thus, it is required to place at the point 
A (as an extremity) a straight line equal to the given 
straight line BC.] See Figure 8. 
Begin 
Step 1: Draw a circle with centre A and radius AB. 
Step 2: Draw a circle with centre B and radius BA. (The 
two circles intersect at D and E.) 
Step 3: Draw a circle with centre D and radius DC. 
Step 4: Draw a circle with centre E and radius EC. 

E 
Figure 8. Illustrating the construction with compasses only. 

These two circles intersect at C and X where X is the 
desired reflection point of C across the imaginary line 
through DE, and XA is the desired length. 
End 

In the spirit of Proclus we invite the reader to supply 
the proof of correctness. 

Conclusions 

We mention in closing that even the 20th-century Al- 
gorithm CO pales by comparison with Algorithm Eu- 
clid from the point of view of robustness with respect 
to singularities. Consider, for example, the case where 
point C happens to lie at a location equidistant from A 
and B. Algorithm Euclid executes in this case as easily 
as in any other because everything is well-defined. 
Without special flag-waving code, however,  Algo- 
rithm CO could crash attempting to draw a circle with 
radius zero and then intersecting two circles, one of 
which has radius zero. 

One apparent difference between modern and clas- 
sical computational geometry concerns the issue of 
lower bounds on the complexity of geometric prob- 
lems. Although Lemoine [23] and others were con- 
cerned with defining primitive operations and count- 
ing the number of such operations involved in a con- 
struction, they do not appear ever to have considered 
the question of determining the minimum number of 
operations required to solve a given problem under  a 
specified model of computation. For example, if we 
define (1) drawing a line and (2) drawing a circle as the 
primitive operations allowed under  the straightedge 
and compass model of computation, Algorithm Euclid 
takes nine steps, whereas Algorithm CO takes only 
four steps. Its nonrobustness not withstanding, is Al- 
gorithm CO optimal? In other words, is four a lower 
bound on this problem? Is Algorithm Euclid the opti- 
mal robust algorithm? It is not difficult to argue that at 
least three steps are required. I conjecture that, in fact, 
four are always necessary. 

2 2  THE MATHEMATICAL INTELLIGENCER VOL. 15, NO, 3, 1993 



This research suggests  that perhaps the chaotic sit- 
uation described here wi th  respect to Euclid's second 
proposition exists also for his other propositions in- 
volving cases, and  indeed for all of Greek mathemat-  
ics. It may  suggest  a new way of examining old con- 
structive mathematics  and  a new approach for histori- 
ans of mathematics  and  philologists. 

There are possible implications for education. It has 
been argued that  Euclidean construction problems pro- 
vide an excellent me thod  of teaching high school stu- 
dents constructive proofs of existence theorems [3]. 
The work presented here suggests that Euclidean con- 
structive geometry can be used as a med ium for teach- 
ing m o d e m  concepts concerning the design and  anal- 
ysis of algorithms to high school s tudents .  For easy 
problems, the s tudents  can prove that  Euclid's con- 
structions are valid for all possible inputs.  For more 
difficult problems, they  can search for constructions 
that require fewer steps. Finally, for really challenging 
problems, they can search for constructions that re- 
quire the fewest number  of steps. 
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