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Abstract

The flamenco music of Andalucia in Southern Spain is characterized by hand clapping pat-
terns in which the underlying meter is manifested through accented claps. A phylogenetic analy-
sis of the five 12/8 time metric timelines used in Flamenco music is presented using two distance
measures: the chronotonic distance of Gustafson and a new distance measure called the di-
rected swap distance. The results support several established musicological tenets. For example,
the fandango and soleá are “centers” of this family of rhythmic patterns. More surprisingly,
the chronotonic distance gives the Cuban (Sub-Saharan African) influenced guajira a prominent
position. Finally, the directed swap distance yields an interesting “ancestral” rhythm.

1 Introduction

Imagine that you are at a concert in Sevilla, after a stunning flamenco performance, clapping
at a fast uniform pace, much like a heart beat while jogging. Even better, try it out right now,
but stop after you reach twelve claps. Then do it again but this time execute the first, third, fifth,
eighth, and eleventh claps loudly, and the remaining seven claps softly. Your clapping pattern could
then be represented like this: [1 2 3 4 5 6 7 8 9 10 11 12], where the claps shown in bold face are
the ones you clap loudly. It may also be helpful to count aloud the twelve claps in groups as follows:
[1 2 1 2 1 2 3 1 2 3 1 2] and to clap loudly only on the one’s. If you repeat this pattern over and
over, you will be clapping the rhythm of the seguiriya from Andalucia in Southern Spain [13], [21].

The flamenco music of Andalucia uses for the most part a 12/8 time meter that is typically
marked by accented claps. To be sure, there also exist flamenco styles that use exclusively binary
meters in 2/4 or 4/4 time. These include the tango and its variants such as the tanguillo, the
rumba, the farruca, the garrot́ın, the zambra and the mariana [13]. All these binary styles use
one and the same meter or clapping pattern given by [. x x x], where “.” denotes a soft clap and
“x” denotes a loud clap. A popular method for representing flamenco clapping patterns is to use
numbers indicating the pulses, with the accented pulses written in bold [8]. Using such a notation
the preceeding pattern is expressed as [1 2 3 4]. This paper is concerned with the more varied,
interesting, and characteristic 12/8 time flamenco metric patterns. We use the term meter loosely
and refer to it also as rhythm [16].
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§School of Computing, Queen’s University. daver@cs.queensu.ca
¶School of Computer Science, McGill University. godfried@cs.mcgill.ca

1



1

2

3

4

5
6

7

8

9

10

11
0

Soleá

Seguiriya Guajira
1

2

3

4

5
6

7

8

9

10

11
0

1

2

3

4

5
6

7

8

9

10

11
0

3 2

1 0

Bulería
1

2

3

4

5
6

7

8

9

10

11
0

Figure 1: The four aperiodic 12/8 time flamenco meters.

One of the pioneering, but non-exhaustive, studies of flamenco rhythms is the book by Hipolito
Rossy [22] published in 1966. It is well established that the fountain of flamenco music is the
fandango. In the words of José Manuel Gamboa [13] “En el fandango está la fuente.” The fandango
pattern is given by [x . . x . . x . . x . .]. This rhythm is periodic and repeats the pattern [x . .]
four times. There are in addition four aperiodic 12/8 time meters [19], [20], [21]. These are as
follows:

[. . x . . x . x . x . x] - soleá
[. . x . . . x x . x . x] - buleŕıa
[x . x . x . . x . . x .] - seguiriya
[x . . x . . x . x . x .] - guajira

The four patterns are depicted as convex polygons in Figure 1, where the “0” marks the position
in time at which the rhythm starts. Note that this may differ from the position at which the rhythm
is “launched” for the convenience of dancers. A word is in order concerning the names we have
attached to these rhythms. The soleá and buleŕıa are used in a large variety of flamenco styles.
What we refer to as soleá is also sometimes called buleŕıa tradicional, and what we call buleŕıa is
sometimes referred to as buleŕıa moderna. The guajira rhythm is used in fewer styles, but is also
most notably used in the petenera. These names are in accordance with the classification described
by Gamboa [13].

2 Measuring Rhythmic Similarity

To carry out the phylogenetic analysis of the flamenco rhythms we first compute the distance (or
dissimilarity) between every pair of rhythms. Here two distance measures are used: the chronotonic
distance and the directed swap distance. The chronotonic representation of a rhythm was first
proposed in 1987 by Kjell Gustafson, at the Phonetics Laboratory of the University of Oxford
for the purpose of displaying speech rhythm [14], [15]. It was later re-discovered by Hofmann-
Engl [17] who proposed it for computing a distance measure, and whose psychological experiments
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Figure 2: The chronotonic representation of the flamenco patterns.

demonstrated that this distance agrees with the human perception of rhythmic similarity. The
directed swap distance is a generalization of the simpler, more constrained, swap distance used
in [23] to compare rhythms that are restricted to having the same number of onsets and time spans.
A recent comparative study [24] of various distance measures suggests that the swap and chronotonic
distance measures are the best for analyzing rhythms.

2.1 The chronotonic distance

Gustafson’s idea (first proposed in 1983) is best explained with an example such as the seguiriya
pattern given by [x . x . x . . x . . x .]. In this representation the relative durations of the intervals
are not easily observed. In a histogram approach to rhythm visualization the intervals between
important events (such as the start, the end, and attack points) are plotted along the y-axis [15],
resulting in the adjacent-interval-spectrum of the rhythm. In such a representation the relative
lengths of the intervals are clearly visible but the temporal information along the x-axis is lost. To
obtain a graphical representation that possesses the advantages of both of these methods, Gustafson
uses time in both dimensions. The result of this union is illustrated in Figure 2, which shows all five
flamenco meters in chronotonic notation. Each temporal element between events (interval) is now
a box and both the x and y axes represent the length of time of the interval. Gustafson refers to
such a display as TEDAS (Temporal Elements Displayed As Squares). The unions of the squares
depicted in Figure 2 can be viewed as rectilinear monotonic functions of time.

Given the chronotonic representation of two rhythms, there are a variety of ways to measure
dissimilarity. In [24] the dissimilarity is measured by the area in between the two functions (curves).
We shall use this measure here and refer to it by the name used in [24], chronotonic distance. The
distance matrix with this distance measure is shown in Figure 3.
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Figure 3: The chronotonic distance matrix of the five rhythms.

2.2 The directed swap distance

Since the directed swap distance reduces to the swap distance when the number of onsets is the
same, we first describe the simpler swap distance and subsequently its modification. A swap is
an interchange of a one and a zero that are adjacent to each other in the binary string. Inter-
changing the position of elements in strings of numbers is a fundamental operation in many sorting
algorithms [11]. However, in the sorting literature a swap may interchange non-adjacent elements.
When the elements are required to be adjacent, the swap is called a mini-swap or primitive-swap [2],
[3]. Here we use the shorter term swap for the interchange of two adjacent elements. The swap
distance between two rhythms is the minimum number of swaps required to convert one rhythm
to the other. For example the rhythm [x . x . x x . x . x . x] can be converted to the rhythm
[x . x x . x x . x . x .] by a minimum of four swaps, namely interchanging the third, fifth, sixth,
and seventh beats with the corresponding rests preceeding them. The swap distance may be viewed
as a simplified version of the fuzzy Hamming distance [5], [6], that results when only the shift oper-
ation is used, and the cost of the shift is equal to its length. The fuzzy Hamming distance may be
computed using dynamic programming in O(n2) time.

The swap distance may alternately be viewed as a special case of the more general earth mover’s
distance (also called transportation distance) used by Typke et al. [26] to measure melodic similarity.
Given two sets of points called supply points and demand points, each assigned a weight of material,
the earth movers distance measures the minimum amount of work (weight times distance) required
to transport material from the supply points to the demand points. No supply point can supply
more weight than it has and no demand point receives more weight than it needs. Typke et
al. [26] solve this problem using linear programming, a relatively costly computational method.
The swap distance is a one dimensional version of the earth mover’s distance with all weights
equal to one. Furthermore, in the case where both binary sequences have the same number of
“one’s” (or onsets), there is a one-to-one correspondence between the indices of the ordered onsets
of the sequences. For example, consider again the two sequences X = [x . x . x x . x . x . x] and
Y = [x . x x . x x . x . x .], each with seven onsets. The i-th onset of X must travel the necessary
distance to reach the position of the i-th onset of Y . For i = 1 this distance is zero. For i = 3 the
distance is one.

The swap distance may of course be computed by actually performing the swaps, but this is inef-
ficient. If X has one’s in the first n/2 positions and zero’s elsewhere, and if Y has one’s in the last n/2
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Figure 4: The directed-swap distance matrix of the five rhythms.

positions and zero’s elsewhere, then at least a quadratic number of swaps would be required. On the
other hand, if we compare the distances of the onsets to the origin instead, a much more efficient al-
gorithm results. First scan the binary sequence and store a vector of the x-coordinates at which the k
onsets occur. For example, X and Y above yield the vectors U = (u1, u2, ..., u7) = (1, 3, 5, 6, 8, 10, 12)
and V = (v1, v2, ..., v7) = (1, 3, 4, 6, 7, 9, 11), respectively. The difference between ui and vi is the
number of swaps that must be performed to bring the two onsets into alignment. Therefore, in
general, the swap distance between two onset-coordinate vectors U and V with k onsets is given by:

dSWAP (U, V ) =
k∑

i=1

|ui − vi| (1)

Computing U and V from X and Y is done trivially in O(n) time with a simple scan. Therefore
O(n) time suffices to compute dSWAP (U, V ), resulting in a large gain over using linear or dynamic
programming. The reader may wonder what the fuss is about in reducing the complexity from
O(n2) to O(n) when for the case of the flamenco rhythms analysed here n = 12. The reason the
complexity difference is important is that these distance measures are also intended to be used in
music information retrieval applications involving entire pieces of music where n is very large.

The directed-swap distance is a generalization of the swap distance to handle the comparison
of rhythms that do not have the same number of onsets. In our study here one flamenco rhythm,
the fandango, has four onsets instead of five. Accordingly let P and Q be two binary sequences of
length n that represent two rhythms. Assume without loss of generality that P has more “1’s” than
Q. The directed-swap distance is the minimum number of swaps needed to convert P to Q with
the following constraints. We will refer to a position that contains a “1” as occupied.
1. Each “1” in P must move to some occupied position of Q.
2. All occupied positions of Q must receive at least one “1” from P .

The distance matrix with the directed swap distance is shown in Figure 4.

3 Phylogenetic Analysis

Several techniques exist for generating phylogenetic trees from distance matrices [18]. Some of
these methods have the desirable property that they produce graphs that are not trees, when the un-
derlying proximity structure is inherently not tree-like. One notable example is SplitsTree [12], [18].
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Like the more traditional phylogenetic trees, SplitsTree computes a plane graph embedding with
the property that the distance in the drawing between any two nodes reflects as closely as possible
the true distance between the corresponding two rhythms in the distance matrix. However, if the
tree structure does not match the data perfectly then new nodes in the graph may be introduced,
as for example in Figure 5, with the goal of obtaining a better fit. Such nodes may suggest implied
“ancestral” rhythms from which their “offspring” may sometimes be derived. In addition, edges
may be split to form parallelograms, (or more general zonotopes) which are also visible in Figures 5
and 6. The relative sizes of these parallelograms are proportional to an isolation index that indi-
cates how significant the clustering relationships inherent in the distance matrix are. SplitsTree also
computes the splitability index, a measure of the goodness-of-fit of the entire splits graph. This fit is
obtained by dividing the sum of all the approximate distances in the splits graph by the sum of all
the original distances in the distance matrix [12], [18]. This index is shown in the upper left-hand
corners of the SplitsTree figures.

Some observations are evident from the distance matrices themselves. In particular, let us
examine the lowest rows in Figures 3 and 4. These numbers are the sums of the distances from a
specified rhythm to all the other rhythms. A relatively small number indicates the rhythm is very
similar to all the others, whereas a relatively large number means it is distinct.

For example, the rhythm most similar to the others is the guajira according to the chronotonic
distance, (with soleá a close second) but the guajira and fandango are tied for this position when
the directed-swap distance is used.

The results of computing the SplitsTrees with the preceeding distance matrices are shown in
Figures 5 and 6. Note that both distance measures yield an impressive fit of 100%.

Consider first the chronotonic distance SplitsTree of Figure 5. It suggests a clustering into three
clusters. One cluster consists of the fandango and seguiriya. The second cluster consists of the
soleá and buleŕıa rhythms, and the guajira is a solitary third cluster. The soleá and buleŕıa rhythms
are the only ones that have anacrusis. The buleŕıa is the most distinct from all the others, with
a sum-distance of 40. It is interesting to note that of all the five rhythms, the buleŕıa is the only
one that has the rhythmic-oddity property [1], [9], [10]. A rhythm has the rhythmic oddity property
if it does not contain two onsets that partition the rhythm drawn on a circle into two half-circles.
This property is a good measure of preference in African rhythm [25]. The more obvious difference
between the buleŕıa and all the other rhythms is that it is the only rhythm that contains intervals
of lengths 1, 2, 3, and 4. The other rhythms have intervals of lengths 2 and 3 only.

The guajira, often described as having significant Cuban influence [4], [20], is the most similar
to all the other rhythms with a sum-distance of 26. It is also the only 5-onset rhythm with an
off-beatness value of zero. The off-beatness (or syncopation) value of a rhythm is defined as the
number of onsets it possesses in positions 1, 5, 7, and 11 [25]. The off-beatness is an even better
measure of preference in Sub-Saharan West African rhythm than the rhythmic-oddity property [25].
In Figure 1 the off-beatness value of each rhythm is indicated in the upper right-hand corner of
each frame. The second most similar rhythm to all others is the soleá with a sum-distance of
28 (almost tied with guajira). These results support the tenet that the soleá is one of the most
paradigmatic and genuine styles of flamenco. In the words of Mercader [20], “la soleá es uno de
los palos más jondos del flamenco.” It is also worth noting that the soleá is very special from the
geometric (group-theoretic) point of view since it is the flamenco rhythm with the highest value of
off-beatness equal to 3.

The SplitsTree of Figure 6 suggests a very similar clustering as that obtained with the chrono-
tonic distance, except that here the fandango and guajira form a tight cluster of two and the
seguiriya is away by itself. The fandango and guajira each have a sum-distance of 21. This result
lends support to the musicological tenet that the fandango is the fountain from which spring all
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Figure 5: The SplitsTree with the chronotonic distance.

flamenco rhythms. Indeed, in the genealogical trees that have been constructed for flamenco music
the fandango is located low and at the center of the main “trunk” of the tree [7]. One should re-
member that these genealogical trees were constructed with the voice and instrumentation totality
in mind, and not the rhythm in isolation. Finally, it is worth pointing out that the fandango and
guajira are the only rhythms with an off-beatness (syncopation) value of zero.

4 Reconstructing Ancestral Rhythms

At present we do not have algorithms available to automatically reconstruct the “ancestral”
rhythms corresponding to the nodes created by the SplitsTree algorithm with our two distance
measures. This problem is under investigation. However, with the directed-swap distance this can
sometimes be done by hand as follows. One rhythm that we were interested in reconstructing is
the ancestral rhythm closest to the “center” of the SplitsGraph. In this case it is the white node
incident to the fandango, guajira, and soleá seen in Figure 6. The output of the SplitsTree program
provides the lengths of all the edges in the graph. From these lengths the following graph-distances
between the unknown ancestral rhythm and all other rhythms may be inferred:

d(ancestor, guajira) = 1
d(ancestor, fandango) = 1
d(ancestor, seguiriya) = 5
d(ancestor, soleá) = 6
d(ancestor, buleŕıa) = 7

From the distances evident in the graph it is reasonable to suppose that the ancestral rhythm
would be quite similar to both the guajira and the fandango, and would therefore consist of either
four or five onsets. Trial and error soon leads to the five-onset rhythm given by [x . . x . . x . . x x .]
illustrated as a polygon in Figure 7. The reader may verify that this rhythm satisfies the five distance
constraints listed in the preceeding. This five-onset rhythm is the composition of the fandango and
one additional onset at position 10.
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Figure 7: The “ancestral” rhythm reconstructed with the directed-swap distance.

A search of the literature to determine if this “ancestral” rhythm makes an appearence anywhere
yielded the following two observations worth noting. Keyser [8] mentions in his book that this
pattern is used often in flamenco as a closure or resolution phrase. Furthermore, it is almost
identical, and has the same feel, as a rhythm Mercader [20] calls the fandango de Huelva. This
rhythm is the composition of the “ancestral” rhythm of Figure 7 with an additional onset half way
betwen the onsets marked 9 and 10. In other words, the fandango de Huelva is described in a span of
24 units as: [x . . . . . x . . . . . x . . . . . x x x . . .]. Removing the middle onset from the triplet
in the fandango de Huelva yields the “ancestral” rhythm.

5 Concluding Remarks

According to Nan Mercader [20], among others [4], the guajira was strongly influenced by Cuban
music (the rhythm punto Cubano) and has the flavor of colonial Spain in the nineteenth century. The
rhythm travelled from Cuba to Spain via the Canary Islands where it mixed with some indigenous
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elements. The name comes from the word guajiro for a creole campesino. The fact that the guajira
appears to be near the “center” of the rhythmic patterns suggests a possible ethnomusicology
research project to determine the exact nature of this influence. Of the five flamenco rhythms
fandango, guajira, and soleá play central roles in the phylogenetic analysis. On the other hand, the
directed swap distance places the generated “ancestral” rhythm depicted in Figure 7 even closer to
the center of the splits graph, with a sum-distance of 20.

Since the guajira rhythm has such a marked external influence, it is natural to ask how diferent
the phylogenetic analysis of the more authentic flamenco rhythms turns out when the guajira is left
out of the analysis. When this is done the chronotonic distance identifies the soleá as the central
rhythm with a sum-distance of 24 to the other three rhythms. With the directed swap distance the
soleá and fandango are tied for center with a sum-distance of 19 for each.
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[13] José Manuel Gamboa. Cante por Cante: Discolibro Didactico de Flamenco. New Atlantis
Music, Alia Discos, Madrid, 2002.

[14] Kjell Gustafson. A new method for displaying speech rhythm, with illustrations from some
Nordic languages. In K. Gregersen and H. Basbøll, editors, Nordic Prosody IV, pages 105–114.
Odense University Press, 1987.

[15] Kjell Gustafson. The graphical representation of rhythm. In (PROPH) Progress Reports from
Oxford Phonetics, volume 3, pages 6–26, University of Oxford, 1988.

[16] Christopher F. Hasty. Meter as Rhythm. Oxford University Press, Oxford, England, 1997.

[17] Ludger Hofmann-Engl. Rhythmic similarity: A theoretical and empirical approach. In
C. Stevens, D. Burnham, G. McPherson, E. Schubert, and J. Renwick, editors, Proceedings
of the Seventh International Conference on Music Perception and Cognition, pages 564–567,
Sidney, Australia, 2002.

[18] Daniel H. Huson. SplitsTree: Analyzing and visualizing evolutionary data. Bioinformatics,
14:68–73, 1998.

[19] Lola Fernández Marin. El Flamenco en las aulas de música: de la transmision oral a la
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