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Abstract: Kirkpatrick and Seidel [I 3,14] recently proposed an algorithm for computing the convex hull of n points in the plane 
that runs in O(n log h) worst case time, where h denotes the number of points on the convex hull of the set. Here a modification 
of their algorithm is proposed that is believed to run in O(n) expected time for many reasonable distributions of points. The 
above O(n log h) algorithms are experimentally compared to the O(n log n) 'throw-away' algorithms of Akl, Devroye and 
Toussaint [2,8,20]. The results suggest that although the O(n log h) algorithms may be the 'ultimate' ones in theory, they are 
of little practical value from the point of view of running time. 
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1. Introduction 

The convex hull of a finite set of points in the 
plane is defined as the minimum area convex poly- 
gon enclosing the set. As one of the earliest prob- 
lems studied extensively in computational geo- 
metry, algorithms for computing the convex hull 
abound. Besides theoretical importance, the con- 
vex hull is of practical relevance as a tool in pattern 
recognition [19]. Hence, improved time bounds 
and faster running time have been the focus of 
research. 

Many algorithms with O(n log n) worst case time 
bounds have been described recently [3,5,11,15,16, 
17]. Several papers have proved an I2(n log n) lower 
bound for finding the convex hull [4,10,16,17,21]. 
Another pair of algorithms [9,12] have been pro- 
posed with a worst case time bound of O(nh), 
where h is the number of convex hull vertices. 

Kirkpatrick and Seidel [13] have presented an 
algorithm for determining the planar convex hull 
with worst case time complexity O(n log h), sensi- 
tive to both n and h. A second more comprehen- 
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sive paper [14] proves I-2(n log h) the lower bound 
for the problem. 

Algorithms with linear expected times have 
also been described [5,18]. Furthermore, Akl, 
Toussaint, and Devroye [2,8,20] have proved that 
an increasing 'throw-away' preprocessing step will 
cause any of the previously mentioned algorithms 
to run in O(n) expected time for certain distribu- 
tions of the input. Actual running times have also 
been reported in [6]. 

In this paper we present a modification of 
Kirkpatrick and Seidel's ultimate planar convex 
hull algorithm [13,14] which is believed to run in 
linear expected time, for some distributions of 
points. Implementations of this and two other 
algorithms are described. The first algorithm is 
Kirkpatrick and Seidel's in its original form. The 
other is Kirkpatrick and Seidel's with 'throw- 
away' preprocessing. The running times of these 
algorithms are compared for several distributions. 
This analysis is especially valuable given that no 
proof presently exists of the linear expected time of 
the modified algorithm. A second reason for im- 
plementing Kirkpatrick and Seidel's convex hull 
algorithm is to check whether the algorithm, which 
is perhaps the theoretical ultimate, is in fact practi- 
cal. 
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2. Description of the algorithms 

Kirkpatrick and SeideI's algorithm is described 
briefly for completeness and to facilitate the des- 
cription of  the modified version of  the algorithm. 
A more extensive description of  the algorithm 
appears in the original paper [131. 

Algorithm 1. Kirkpatrick and Seidel's original al- 
gorithm 

Procedure UPPER HULL(S) 

Input : A set S ={PI  . . . . .  Pn} of  n points in the 
plane, where x(P) and y(P) denote stan- 
dard Cartesian coordinates. 

Output : The sequence of  indices of  the vertices on 
the upper hull of  S. 

1.1. Let Pxmin and Pxmax" be the points with mini- 
mum and maximum x coordinate. 

1.2. Let 

T= {Pxmin, Pxmax} 
U { p in S [ x(Prmi n) < x(P) < X(Pxmax) } • 

1.3. CONNECT(Xmin,xmax, T). 

Procedure CONNECt(l, r, S) 

2.1. Find a real number a such that a is the mean 
of  the median xcoordinate  and the next largest 
x coordinate. 

2.2. Find the 'bridge' over the vertical line 

A = { ( x , y ) I x = a } ;  (h j ) : =  BRIDGE(S,a). 

2.3. Let Slert = {P in S l x(P)<-x(Pi)}. 
Let Sright = {P in S [x(P)>-x(Pi)}. 

2.4. If i=l then print (i). 
else CONNECT(/, i, Sleft ). 

l f j = r  then print (i). 
else CONNECT(J, r, Sright ). 

Function BRIDGE(S, a) 

Input : A set S =  {Pa . . . . .  Pn} of  points and a real 
a representing the line A = {(x,y) Ix=a}. 

Output :  A pair (i,j), where Pi and Pj are the left 
and right bridge points respectively. 

The function BRIDGE pairs up all points in the set 
S and defines a line through each pair. The median 

slope of  these lines is computed and the support 
line of  the set having this slope is determined. If  
this support line contains points on each side of  
line A, then the vertices on this line with minimum 
and maximum x coordinate are the bridge. Other- 
wise, if the support line contains no points to the 
right of  line A, then of  the point pairs defining 
lines with slope less than or equal to the median 
slope, the point with the least x coordinate is dis- 
carded. Or, if the support line contains no points 
to the left of  line A, then of  the point pairs de- 
fining lines with slope greater than or equal to the 
median slope, the point with the greatest x coordi- 
nate is discarded. BRIDGE calls itself recursively 
with the remaining points, until the bridge is found. 

Procedure LOWER HULL is defined analogously 
to Procedure UPPER HULL. 

In Step 2.3, the algorithm removes from con- 
sideration the points under the bridge. In Figure 1, 
the shaded area under the upper hull represents the 
location of  ignored points. 

Algorithm 2. Kirkpatrick and Seidei's algorithm 
with modification 

Algorithm 2 is defined in much the same way as 
Algorithm 1. However, Steps 1.2 and 2.3 are re- 
placed by the following modified steps. 

Bridge(i.j~ 
Pi Pj 

"'4 

Pxmin ; r ' ~ i  

Figure 1. Points in the shaded area are discarded by Step 2.3 of 
Kirkpatrick and Seidel's original algorithm. 
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Bridge(i.j) ~ PJ 
Pi 

l~ lax 

Pxmin 

Figure 2. Points in the shaded area are discarded by the modi- 
fied Step 2.3. 

1.2. Let 

2.3. Let 

Let 

T = {P in S Ix(P) above the line 

through Pxmin and Pxmax}" 

Sleft = {P in S]x(P)<.x(Pi) 
and x(P) above the line through 

Pk and Pi}. 

S~igh~ = {P in S I x(P)~x(Pi) 
and x(P) above the line through 
Pj and P,,}. 

In the modified Step 2.3, the algorithm removes 
from consideration points in a larger area than in 
the original Step 2.3. This new step cannot discard 
convex hull vertices, as these must lie outside any 
partial hull. In Figure 2, the shaded area under the 
upper hull represents the location of  ignored points. 

and Pvmax is the point with maximum y co- 
ordinate. Let 

T =  {P~min, P.vxmax, Pvmax, Pxvmax, Pxmax} 

U {P in S [ P  is above the convex 

polygonal chain (Prmin, Pvxmax, 

Pvmax, Pxymax, Pxmax)}" 

3. Description of implementation 

All these algorithms were implemented in Stan- 
ford PASCAL. The 'sets' were implemented using 
linked lists. CONNECT and BRIDGE were imple- 
mented as recursive procedures. Finding the median 
(such as the median line A or the median slope) was 
implemented using the algorithm of  Blum et al. [7] 
as described in [11. The code for ULTIMATEI, 
ULTIMATE2 and ULTIMATE3 are available from the 
authors. 

ULTIMATEI. Implementation of Kirkpatrick and 
Seidel's algorithm 

The lower hull is found by modifying the method 
used to find the upper hull. Since the points are 
generated in the unit square, the y coordinates 
were subtracted from 1 to 'flip' all the points. This 
enabled the UPPER HULL procedure to handle the 
case of finding the lower hull. Also, CONNECT was 
run from right to left, for procedure LOWER HULL, 
to allow the main program to produce all the 
points of  the hull in order. 

Algorithm 3. Kirkpatrick and Seidel's algorithm 
with 'throw-away' preprocessing 

Algorithm 3 is defined in much the same as 
Algorithm 1. Step 1.2 is replaced by the following 
modified version. This method of  ' throw-away' is 
fully documented elsewhere [2,20]. 

1.2. Let xymax,  yxmax  and ),max be 3 other ex- 
tremal points falling on the convex hull; where 

Pxy max maximizes 

(-x(Pi) +Y(Pi)), 

Pvxmax maximizes 

(x(Pi) +Y(Pi)) 

ULTIMATE2. Implementation of the modified al- 
gorithm 

The condition ' P  above the line through Pt and 
Pi' is true if the crossproduct of Pi ,Pi ,  P is posi- 
tive. 

ULTIMATE3. Implementation of the algorithm with 
"thro w-away' 

The condition 'P  above the polygonal chain 

(Pxmin, Pyxmax, Pvmax, Pxymax, Pxmax)' 

is tested as follows: 
For each point P, find the edge (P~,Pf) such 

that 
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x (P  e) >_ x (P)  >- x(Pt) .  

Retain the point P if the crossproduct o f  Pe, Pf, P 
is positive. 

Note that the polygonal chain may have at most 
4 edges, but may have fewer in the special case 

where two extremal points are equal. Duplicates 
can simply be 'deleted'  f rom the chain and the 
method above is then applied. 

4.  E x p e r i m e n t a l  results  

The three algorithms implemented, ULTIMATE I, 
ULTIMATE2 and ULTIMATE3, were run on an 

AMDAHL 5850 computer  using the Stanford 
PASCAL Compiler.  Monte-Carlo simulations were 
carried out. There were two simple sizes; 1000 and 
2000 points in the plane. Pseudo random samples 
were generated for four distributions: 

(I)  uniform in the unit square, 
(2) circular normal,  
(3) uniform in a unit circle, and 
(4) uniform on the boundary  of  a unit circle. 

The programs were timed using FORTRAN library 
subrout ines  TIMERI and TIMER2. 

Table 1 
Mean running times (milliseconds) of three programs for five 
random samples of size n for four distributions 

Distribution PROGRAM N= 1000 N = 2000 

U L T I M A T E  I 1363.8 2597.6 
Uniform in the 

ULTIMATE2 524.7 1076.3 
unit square ULTIMATE3 271.6 323.6 

ULTIMATE I 1299.4 2726.2 
Circular ULTIMATE2 473. I 994.0 
normal U LTIMATE3 178.3 313.1 

ULTIMATEI 2019.6 4757.3 
Uniform in a U LTIMATE2 543.5 1191.0 
unit circle ULTIMATE 3 285.5 714.5 

ULTIMATEI 4563.7 10848.3 
(1000) a (2000) a 

Uniform on the ULTIMATE2 2222.2 5254.9 
boundary of a (993) a (1987) a 
unit circle ULTIMATE3 2187.9 5181.3 

(993) a (1988) a 

a Mean number of convex hull points found. 

The results of  the experimental runs are shown 
in Table I. Mean times for five random samples 
for each combinat ion of program,  distribution, 
and sample size are presented. It is evident that 
for every distribution ULTIMATE I is the slowest, 
ULTIMATE2 is faster, and ULTIMATE3 is the fastest. 

The case where all generated points lie on the 
boundary  of  a circle and also on the convex hull, 
ULTIMATE I iS slower than the other two programs. 
The gap between ULTIMATE2 and ULTIMATE3 is 
quite small for this distribution. 

For points generated uniformly in the unit 
square, ULTIMATE2 is believed to run in O(n) ex- 
pected time and the ' throw-away '  preprocessing 
used in UI_TIMATE3 has been shown to enable 
algorithms with even O(n ~) worst case time com- 

plexity to run in O(n) expected time. The belief for 
ULTIMATE2 is substantiated by the fact that it runs 
two and a half times faster than the original algor- 
ithm, ULTIMATE I, which does not run in linear 
expected time for these distributions. The proof  of  
ULTIMATE3'S expected time is corroborated by its 
excellent performance here, showing how powerful 
the ' th row-away '  procedure is [2,8,20]. Notice that 
for this distribution ULTIMATE3 can compute the 
convex hull of  2000 points before ULTIMATE2 has 
finished solving the problem for 1000 points. 

Another interesting point that should be made is 
that all three programs are exceedingly slow. It has 

been shown by Bhattacharya and Toussaint [6] 
that Eddy ' s  O(n 2) algorithm [91 with ' throw-away '  
preprocessing computes the convex hull of  100 
points on the boundary of  a circle in 152.9 milli- 
seconds. Though Eddy 's  algorithm appears much 
faster, the environments in which the Monte-Carlo 
simulations were run are very different (Stanford 
PASCAL vs. FORTRAN G1; AMDAHL 5850 vS. 
AMDAHL V-7), and are not directly comparable.  
Thus, no rigorous conclusion may be drawn. 

All three implementations are reliable. The tact 
that ULTIMATE! always finds n convex hull points 
for n points generated uniformly on the boundary 
of  a unit circle is astounding. ULTIMATE2 and 
ULTIMATE3 are close behind finding 9907o of  the 
convex hull vertices. The figures for ULTIMATE2 
and ULTIMATE3 differ f rom ULTIMATEI due to the 
precision involved in the computat ions of  the cross- 
products computed in the former implementations. 
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It should be noted that almost  all existing convex 

hull  a lgori thms make use of crossproducts .  

The reliabili ty of  these programs may be com- 

pared to that  of  the implementa t ions  of Eddy ' s  [9] 

and  Akl and  Toussa in t ' s  [3] a lgori thms given in 

Bhat tacharya  and  Toussa in t  [6]. On  the average, 

the implementa t ion  of  Eddy finds 944 out of 1000 

points  on the b o u n d a r y  of  a circle, while that of  

Akl  and  Toussa in t  returns 971. 

5. Conclusions 

Implementa t ions  of various versions of  Kirk- 

patrick and  Seidel 's  a lgori thm were presented and  

were found  to be very slow in general.  Though  

having a worst case complexity of  O(n  log h) which 

is theoretically opt imal ,  this complexity has a very 

large cons tan t  factor. A modif ied version of this 

or iginal  a lgor i thm believed to run  in l inear ex- 

pected t ime was shown to be a b o u t  two and  a half  

t imes faster than the implementa t ion  of  Kirkpatr ick 

and  Seidel 's  a lgori thm.  However,  it could not  keep 

up with Kirkpatr ick and Seidel 's a lgor i thm with 

' t h row-away '  preprocessing, showing how power- 

ful this technique is. P roo f  of  the O(n)  expected 

t ime per fo rmance  of the modif ied a lgor i thm,  even 

for un i fo rm dis t r ibut ions ,  remains  an open  prob-  

lem. Hence,  the theoretically ' u l t ima te '  convex 

hull  a lgor i thm for points  in the plane does not  live 

up to expectat ions in practice, where the best 

a lgor i thm to date (with respect to space and  time) 

still appears  to be that of  Akl and  Toussa in t  [2] as 

implemented  by Bhat tacharay and Toussa in t  [6]. 

However ,  as the experimental  results show, the 

a lgor i thm of  Kirkpatrick and  Seidel is the most  

accurate  f rom the numerical  point  of  view, of  all 

a lgori thms tested so far by the authors .  Thus ,  if 

the pr imary practical considera t ion is accuracy 

over and above runn ing  time then their a lgor i thm 

may  still be preferred.  
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