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chy of Figure 7. Recall from Figure 14 that three monotone polygons can sequentially interlock and
four can interlock under simultaneous general motions. It is conjectured that three unimodal poly-
gons are sequentially separable and four are always separable under simultaneous general motions.

Consider the problem of detecting and computing a translation ordering in a specified direc-
tion θ of a given set of polygons IP = {P1, P2,..., PM}, each of which contains n vertices. It is shown
in theorems 4.10 and 4.11 that the detection and computation problems, respectively, can be solved
in O(min(M2n, Mn log Mn)) and O(min(M3n, M2n log Mn)) time. These upper bounds are ob-
tained by a simple combination of existing algorithms. Thus it is reasonable to expect that these
bounds can be improved.

Consider the problem of translating circles and spheres. In reference [20] it is shown that giv-
en a collection of circles C = {C1, C2,..., Cn}, all the circles in C that can be translated to infinity
individually without disturbing the others can be identified by taking each circle Ci in turn and ap-
plying the circle-reachability algorithm described therein. This produces O(n) sets of circles for
which the Laguerre Voronoi diagram is computed O(n) times leading to the O(n2 log n) complexi-
ty. Can this complexity be reduced? Perhaps this problem can be solved in O(n log n) time if the
Laguerre Voronoi diagram [50] is computed only once on C and thereafter each circle is treated in
O(log n) time in a query type mode. Another open problem is of course determining all the spheres
that can be so translated in a collection of spheres S = {S1, S2,..., Sn} in 3 dimensions. There is no
conceptual difficulty in applying the two-dimensional technique to this case. In fact, fast hidden
sphere algorithms for intersecting spheres in 3 dimensions exists [51]. However, it is an open ques-
tion how fast we can compute the Laguerre Voronoi diagram in 3 dimensions, or otherwise com-
pute the contour-surface of the union of n spheres.

Theorem 5.7 states that two polyhedra P and Q strongly monotonic with respect to PL(l1) and
PL(l2), respectively, are separable with a single translation when l1 = l2. It is an open problem
whether this is true for l1 ≠ l2. More generally, Dawson [27] has shown that any finite collection
of star-shaped polyhedra are separable under simultaneous translations. It is not known whether
this also holds true for strongly monotonic polyhedra in 3-space.

Section 5.3 illustrates some solutions to problems concerning the passing of a convex poly-
hedron P through a convex hole W in a “thin” wall. Theorem 5.5 gives a solution to the problem
of determining whether P can be passed through W with a single translation and no pre-positioning.
It is an open problem how fast this can be determined if one translation is also allowed for pre-
positioning.

Finally, it is not yet known how fast we can determine if a convex polyhedron can be passed
through a convex hole when arbitrary motions are allowed.
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Figure 20 illustrates two polyhedra P, Qstrongly monotonic with respect to PL(z). It is taken
from [44] and is known in Japanese carpentry as the “Ari-Kake” joint. Note that because of the
“dove-tail” P and Q can only be separated with a translation in the z direction. It is proven in [39]
that such polyhedra are always separable if they share a common directionl.

Theorem 5.7:  Two polyhedra P, Q both of which arestrongly monotonic with respect to PL(l) are
separable with a single translation in directionl.

.5.6:   Satin and Twills: The Computational Geometry of Weaving

Another class of movable separability problems occurs in the design of fabrics, i.e., weaving
[47]. We give a brief description of one such problem but for details the reader is referred to [47]
- [49]. We borrow some definitions from Grünbaum and Shephard [47].

The wordfabric will be used in a mathematical sense to mean, roughly speaking, two layers
of congruent strands in the same plane E such that the strands of different layers are nonparallel
and they “weave” over and under each other in such a way that the fabric “hangs together”. To be
precise, “weaving” means that at any point P of E which does not lie on the boundary of a strand,
the two strands containing P have a statedranking, that is to say, one strand is taken to have pre-
cedence over the other, and this ranking is the same for each point P contained in both strands. This
concept may be conveniently expressed by saying that one strandpasses over the other, in accor-
dance with the obvious practical interpretation. By saying that the fabrichangs together we mean
that it is impossible to partition the set of all strands into two nonempty subsets so that each strand
of the first subset passes over every strand of the second subset.

It is convenient to let the plan E be the xy plane in 3-space and to consider translations of the
strands in the z direction. Note that it is not necessary that the strands be ideal in the sense of having
zero or negligible thickness. See, for instance, [46] for examples of “polyhedral fabrics” such as
tabbies and twills. Here thestrands are convex weakly-monotonic polyhedra. If the set of all
strands admits a translation ordering in the z direction the fabric “falls completely apart”. Thus is
our terminology determining whether a fabrichangs together is equivalent to determining if there
exists a translation ordering of strict subsets of strands in the z direction.

A fabric can be represented by a matrix of 1’s and 0’s and for this representation efficient
algorithms for determining whether a fabric hangs together are given in [48] and [49].

If we are given a “polyhedral fabric” we can first obtain the matrix representation of the fab-
ric by solving the hidden surface problem for all strands taken together in the z direction.

6.  Conclusion

We conclude by discussing some open problems in this area. It was mentioned in section 3
that a score of different families of polygons have made their appearance in the computational geo-
metry literature. As we see in section 4, movability properties are knows for a few classes of poly-
gons; convex, star-shaped, and a monotone being noteworthy examples. Consider the case ofuni-
modal polygons. One would expect unimodal polygons to experience a greater degree of freedom
of motion than monotone polygons since unimodal polygons are closer to rectangles in the hierar-
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Figure 19: Two polyhedra weakly monotonic with respect to a common direction can interlock
                   under all motions.

Figure 20: Two polyhedra strongly monotonic with respect to PL(z).
                  This example is take from[44] and illustrates the “Ari-Kake” joint in Japanese
                carpentry. The only way to separate this pair of polyhedra is to translate either

                 P or Q in the z direction.
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Fact: Two polyhedra P, Q weakly monotonic with respect to a common direction l can interlock
under all motions.

Consider the two polyhedra in Figure 19. P is an “isothetic coil” and Q an “isothetic cross”.
They are weakly monotonic with respect to a direction parallel to the x axis. By thickening the four
“arms” of the “cross” until they touch the “coil” we cannot subsequently move one without the
other. This holds true for all possible translations, rotations, and screw motions, i.e., simultaneous
translations and rotations.

Another characterization of monotone polygons in the plane follows from the definition of
directional convexity. A polygon P is monotonic in direction l if for every pair of points a, b ∈ P,
such that the line L(a,b) through a and b is orthogonal to l, the line segment [a,b] lies in P. Alter-
nately, we say the polygon is directionally convex with respect to l + π/2. Several possibilities exist
for generalizing this notion to higher dimensions.

Definition: A polyhedron P is directionally convex with respect to l, if there exists a direction l
such that for every pair of points a, b ∈ P with L(a,b) parallel to l, the line segment [a,b] lies in P.

Fact: Two polyhedra P, Q directionally convex with respect to a common direction l can interlock
under all motions.

The example of Figure 19 illustrates the point. Both P and Q are directionally convex with
respect to the y axis.

Note that if a polyhedron P is directionally convex with respect to l it does not necessarily
follow that P is weakly monotonic with respect to all directions orthogonal to l. Polyhedron P in
Figure 19 is directionally convex with respect to the y axis but it is not weakly monotonic in the z
direction. In the above definition only one direction l was used for convexity. We can obtain dif-
ferent families of directionally convex polyhedra by increasing the number of directions used. One
way of doing this is to consider all directions lying on a plane, as in the following definition.

Definition: A polyhedron P is directionally convex orthogonal to l, if there exists a direction l
such that for every pair of points a, b ∈ P lying on a plane orthogonal to l, the line segment [a,b]
lies in P.

Note that such a polyhedron must be weakly monotonic with respect to l in the convex sense.

Under all three definitions above we have seen that two polyhedra can interlock under all mo-
tions. Now we introduce a class of polyhedra which we call strongly monotonic which possesses
some movability properties analogous to monotone polygons in the plane. Let PL(l) denote a plane
orthogonal to a direction l.

Definition: A polyhedron P is strongly monotonic with respect to PL(l) if there exists a direc-
tion l such that all planes parallel to l that intersect P form as their intersection with P a simple poly-
gon that is monotonic in direction orthogonal to l.
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the cones in D gives another cone which is the set of directions for simultaneous translation
of all the pi, and hence of P. Each cone can be computed in O(m) time and thus all cones can
be found in O(mn) time. All the cones can be translated to D in O(mn) time. All that remains
is to compute the intersection of all the cones. Now, each cone can be viewed as the intersec-
tion of m half-spaces determined by the planes co-planar with the m faces of each cone. The
interior half-space contains the cone. Therefore the solution cone is the intersection of all the
interior half-spaces determined by all the cones in D. Now, the intersection of k half-spaces
in 3-dimensional space can be computed in O(k log k) time using an algorithm of Preparata
and Muller [45]. Therefore the solution cone can be obtained in O(mn log mn) time. Q.E.D.

5.4:   Separating star-shaped polyhedra

The results of section 4.3 on star-shaped polygons in the plane extend to three dimensions.
Let P = {P1, P2,..., PM} be a collection of M non-intersecting star-shaped polyhedra with n vertices
each. Dawson [27] has shown that P can always be separated with simultaneous translations. Let
Ki be the kernel of Pi and let ki be a point in Ki. Let x be any point in 3-space. The vector xki de-
termines the velocity and direction of translation for Pi in a valid set of simultaneous translations.
Since the linear programming algorithm of Dyer [24] runs in linear time in 3 dimensions as well,
we have the following theorem.

Theorem 5.6:  Let P be a collection of star-shaped polyhedra. A set of translations for simulta-
neous separation of P can be determined in O(nM) time.

.5.5:   Interlocking monotone polyhedra

In the previous section we observed that some of the movability properties of star-shaped
polygons in the plane carry over exactly to star-shaped polyhedra in 3-space. The definition of
monotone polygons, on the other hand, does not generalize straightforwardly or uniquely to three
dimensions. In this section we explore several families of “monotone” polyhedra and consider
some of their separability properties.

One common definition or characterization of monotone polygons is as follows. A polygon
P is monotonic in direction l if for every line L orthogonal to l that intersects P, the intersection
L ∩ P is a line segment (or point). We generalize this definition to 3-dimensional space to obtain
a family of monotone polyhedra we call weakly monotonic.

Definition: A polyhedron P is weakly monotonic in direction l if there exists a direction l such
that each plane orthogonal to l that intersects P, yields a simple polygon (or a line segment or point).

Note that there exists a score of rather well-known special classes of simple polygons [17],
[42] - [43]. By substituting these for the word simple in the above definition we obtain a score of
families of weakly monotonic polyhedra. Thus we say that if all the intersections are convex, we
have a weakly monotonic polyhedron in the convex sense. Figure 18 illustrates a weakly monotonic
polyhedron in the monotonic sense, i.e., with monotonic polygons as intersections.

In [35] it was shown that two monotonic polygons in the plane, even if they do not share a
common direction of monotonicity, can always be separated with a single translation. In three di-
mensions, on the other hand, weakly monotonic polyhedra lose all their freedom of motion, even
if they share a common direction of monotonicity, as we now demonstrate with an example.
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Theorem 5.3:  Given a convex polyhedron P = (p1, p2,..., pn) and a convex window W = (w1, w2,...,
wm) on a plane H, whether P can pass through W by a single translation orthogonal to H, after
prepositioning with only a single translation, can be determined in O(n + m) time.

Note that if SH(P, θ), where θ is orthogonal to H, cannot be contained in W it is still possible
that P can pass through W by a single translation after pre-positioning with only a single transla-
tion.

Chazelle [41] has also shown that given two convex polygons Q(n) and R(m) whether Q can
be contained in R by translations and rotations can be determined in O(nm2) time, and we therefore
have.

Theorem 5.4:  Given a convex polyhedron P = (p1, p2,..., pn) and a convex window W = (w1, w2,...,
wm) on a plane H, whether P can pass through W by a single translation orthogonal to H, after pre-
positioning with arbitrary translations but rotations only with respect to axes of rotation orthogonal
to H, can be determined in O(nm2) time.

A related problem asks for the smallest, in some sense, window W on a plane H through
which a given convex polyhedron P can be passed with a single translation orthogonal to H after
pre-positioning P with arbitrary translations and rotations. This problem is directly related to find-
ing the smallest shadows. McKenna and Seidel [37] give an O(n2) algorithm for computing the
minimum-area shadow of a convex polyhedron with n vertices.

As a final example of this type of problem, we can ask whether there exists a direction for a
polyhedron to pass through a hole by a single translation without pre-positioning. Let
P = (p1, p2,..., pn) be a convex polyhedron arbitrarily positioned, on one side of a plane H, with
respect to a convex window W = (w1, w2,..., wm) in H. Then we obtain the following lemma.

Lemma 5.3: P can pass through W with a single translation in direction θ if, and only if, each
vertex of P can be passed through W with a single translation in direction θ.

Note that this no longer holds true for non-convex holes in H.

Lemma 5.3 allows us to solve the above problem. In fact we can do more; we can compute
all directions for passing P through W with a single translation and no pre-positioning. Alternately,
we can view this problem as computing all the shadows SH(P, θ) on H that can be contained in W.

Theorem 5.5:  Given a convex polyhedron P = (p1, p2,..., pn) arbitrarily positioned on one side of
a plane H, with respect to a convex window W = (w1, w2,..., wm) in H, all directions for translating
P through W can be computed in O(mn log mn) time.

Proof: By lemma 5.3 we can restrict ourselves to computing all directions for simultaneously
translating the vertices of P through W. Consider vertex pi. All directions for translating pi
from its initial configuration through W are defined by all the vectors emanating from pi and
intersecting H in W. Therefore the cone determined by the half-lines from pi through wj,
j = 1,...,m specifies all such directions for pi. Denote such a cone by CONE(pi, W). Construct
a 3-dimensional euclidean direction space D and translate all the cones CONE(pi, W),
i = 1, 2,..., m in D such that the pi all overlap with the origin of D. Then the intersection of all
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Dawson [27] has shown that given a collection of n spheres in 3-space at least min{n, 4} of
them can be translated to infinity without disturbing the others. Lemmas 5.1 and 5.2 allow us to
sharpen this result.

Let CH(O) denote the convex hull of O = {o1, o2,..., on} and let H be the number of sphere
centers that lie on vertices, edges, and faces of CH(O). We then have the following theorems [20].

Theorem 5.2:  Given S = {S1, S2,..., Sn}, then the number of spheres that can be translated to in-
finity without disturbing the others is at least H and they can be identified in O(n log n) time.

5.2:   Translating convex polyhedra

Consider first the isothetic case. It turns out that four isothetic rectangular polyhedra can be
arranged such that for some directions in 3-space no translation ordering exists. The example due
to Guibas and Yao [8] is reconstructed in Figure 17. A more surprising result is that if we relax the
isothetic requirement we can find sets of rectangular polyhedra that do not admit a translation or-
dering in any direction. Therefore, convex polyhedra in 3-space do not exhibit the translation or-
dering property. An example of twelve convex polyhedra that do not admit an ordering in any di-
rection is given in [39]. In the example in [39], two polyhedra can be moved to infinity for some
chosen directions. An even more surprising result due to Dawson [27] is an example of twelve con-
vex polyhedra none of which may be translated in any direction without disturbing the others. A
similar example with only six objects was discovered by Post [40].

5.3:   Passing a convex polyhedra through a window

A generalization of the problem illustrated in Figure 8 asks for whether a convex polyhedron
P can be passed through a convex window W. Here W may be a circle, a rectangle, or an arbitrary
convex polygon. Let H be a plane not intersecting P and assume a light source at infinity some-
where on the same side of H as P.

Definition: The shadow of P, denoted by SH(P), is a convex polygon determined by the projec-
tion of P onto H, i.e., the portion of H not illuminated. If θ is the direction of the “light rays” we
will also use SH(P, θ) to denote the shadow of P in direction θ.

One would hope for a theorem analogous to theorem 4.1 relating SH(P) to the window W.
Unfortunately this is not the case. While it is true that if there exists a direction of projection θ such
that SH(P) fits into W, then P can be passed through W (a single translation will do), there exists
cases where no shadow of P on any plane H fits into W and yet P can still be passed through W by
some sequence of displacements [21]. Nevertheless, the shadow concept is still relevant to the
problem of separability, in particular if we are interested in separation with a single translation after
initial positioning. We can also limit the initial positioning displacements to translations only. Let
P = (p1, p2,..., pn) be a convex polyhedron and let W = (w1, w2,..., wm) be the convex window on
a plane H. Chazelle [41] has shown that given two convex polygons with n and m vertices, respec-
tively, whether the first can be fitted into the second with translations only can be determined in
O(n + m) time. Furthermore, given a polyhedron P in 3-space and a direction θ orthogonal to a
plane H, the SH(P, θ) can easily be computed in O(n) time. We thus have the following theorem.
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Figure 17: A set of isothetic convex polyhedra that does not allow translation ordering in some directions
                  such as x + y.
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Figure 18: Illustrates a weakly monotonic polyhedron with monotonic intersections.
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idea with the following example. Recall from Figure 14 that three star-shaped polygons can be se-
quentially interlocked. If on the other hand the polygons are isothetic then any number of them are
sequentially separable.

Theorem 4.12: A collection of M isothetic star-shaped polygons admits a translation ordering in
the x and y directions.

Proof: First we note that if an isothetic polygon is star-shaped then it is monotonic in the x and
y directions [38]. The result then follows from lemma 4.1 and theorem 4.9. Q.E.D.

5.  Separability in Three Dimensions

5.1:   Translating spheres

In section 4.1 it was pointed out that the line-sweep heuristic is successful in determining a
translation ordering in the x and y directions for a collection of isothetic rectangles. It is clear that
the arguments carry over to three dimensions (x, y, z directions) for isothetic rectangular solids. It
turns out that it also works correctly for sets of spheres of equal radii [20]. Furthermore, a variation
of line sweep will work for unequal spheres [20]. (Actually, a plane-sweep in 3-D)

Let S = {S1, S2,..., Sn} denote a set of n non-intersecting spheres in 3-space with centers
O = {o1, o2,..., on}, where  is specified by the cartesian coordinates of oi, namely (xi, yi, zi), and
the radius ri. A great circle on a sphere  is a circle on the surface of  that partitions  into two
hemispheres. Consider a sphere  and assume there is a light source at infinity casting rays of light
in direction l. The shadow tunnel of  in direction l, denoted by ST( , l) is that subset of space
not illuminated by the light source along with its boundary.

Lemma 5.1: Given S = {S1, S2,..., Sn},  can be translated to infinity in direction l without dis-
turbing the other spheres if, and only if, no point of , j = 1, 2,..., n, j ≠ i lies in the interior of
ST( , l).

Let HS( , l) denote the open half-space determined by the plane orthogonal to l that cuts
at a great circle and contains ST( , l). Similarly let HS( , l) denote the complement of the

union of HS( , l) and the cutting plane. These half-spaces will be referred to as closed when the
cutting plane is included in the set.

Lemma 5.2: Given S = {S1, S2,..., Sn}, if there exists a direction l and a sphere  such that the
oj, j = 1, 2,..., n, j ≠ i all lie in closed HS( , l) then  can be translated to infinity in direction l
without disturbing the other spheres.

Lemmas 5.1 and 5.2 imply that if we apply plane-sweep to the centers of the spheres rather
than the spheres themselves we can obtain a valid translation ordering. We thus obtain the follow-
ing two theorems proved in [20].

Theorem 5.1: Given S = {S1, S2,..., Sn}, for all directions l there exists an ordering on S such that
the spheres can be translated by some common vector in direction l one at a time without collision
and such an ordering can be computed in O(n log n) time.
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Theorems 4.7 and 4.9, together with existing solutions to certain geometric problems [30] -
[32], [36] offer immediate algorithms for solving the problems of detecting and computing trans-
lation orderings for sets of simple polygons.

The Detection Problem

Theorem 4.10:Given a collection of M simple n-gons P = {P1, P2,..., PM} and a direction θ,

whether or not a translation ordering exists can be determined in time O(min(M2n, Mn log Mn)).

Proof: From theorems 4.7 and 4.9, it follows that we can first compute the visibility hulls
VH(Pi,θ), i = 1, 2,..., M and subsequently determine if any pair intersects. The first step can
be done in O(Mn) time [30] - [31]. The second step can be done in two ways. Since the
VH(Pi,θ) are monotonic polygons with a common direction of monotonicity θ + π/2, it fol-
lows that whether any pair intersects can be determined in O(n) time. Testing all such pairs
yields O(M2n) time for this method. The second method is to consider the M n-gons as a set
of Mn line segments and to use the method of Shamos & Hoey [32] to yield a complexity of
O(Mn log Mn). Q.E.D.

Note that which method is faster depends on whether M or n dominates in a given problem.
If M is a constant we have O(n) versus O(n log n); if n is a constant we have O(M2) versus
O(M log M).

The Computation Problem

Theorem 4.11:Given a collection of M simple n-gons P = {P1, P2,..., PM} and a direction θ that
admits a translation ordering of P, then such a translation ordering can be computed in time

O(min(M3n, M2n log Mn)).

Proof: Two approaches are immediately obvious.

Method 1: For every top vertex construct a half-line in direction θ and determine if it intersects any
of the remaining Mn-1 edges. This can be done in O(M2n) time. Now in O(M) time we can deter-
mine which polygon is the first to move. We repeat this for the remaining polygons until none re-
main for a total complexity of O(M3n).

Method 2: Considering the M polygons as a set of Mn line segments, we can compute the next-
element subdivision in direction θ in O(Mn log Mn) time [36]. From this structure we can pick out
the first polygon to move in O(M) time. Repeating for the remaining polygons leads to a total com-
plexity of O(M2n log Mn). Q.E.D.

Note that, as before, which method is faster depends on whether M or n dominates. Hossam
ElGindy has reduced the complexity of both the above problems to O(Mn log M).

4.6:    Isothetic polygons

In some applications areas such as VLSI [8] the collection of polygons is isothetic with re-
spect to a common pair of orthogonal direction (say the x and y axes). One would expect movability
to enjoy some additional freedom as compared to the case of arbitrary polygons. We illustrate this
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Figure 16: The monotone chain with the lowest illuminated top vertex can always be moved out first.
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Theorem 4.8: Given two simple n-gons P and Q, and a direction θ, whether or not P and Q are
separable by a single translation in direction θ can be determined in O(n) time.

Proof: From theorem 4.7 it follows that it is sufficient to compute the visibility hulls of P and Q
in the direction θ and then determine if the hulls intersect. The first step can be done in O(n)
time with either of the algorithms of El Gindy and Avis [30] or Lee [31]. The second step can
be done in O(n) time with a slight variation of the “slab” method of Shamos & Hoey [32] for
intersecting convex polygons. Q.E.D.

Theorem 4.9: A set of polygons IP = {P1, P2,..., PM} admits a translation ordering in direction θ
if, and only if, every pair of polygons, viewed in isolation, is separable with a single translation in
direction θ.

Proof: Without loss of generality let θ be the x axis. First consider the case when a translation
ordering exists. Let each polygon be translated in order by some fixed magnitude and assume
we have just translated P(i) from position A to position B. Clearly P(i) is separable from each
polygon in the set {P(1), P(2),...,P(i-1)}. Furthermore, P(i) can be translated back to A from B.
Therefore P(i) is separable from each polygon in the set {P(i+1), P(i+2),...,P(M)}. Since this re-
mains true for all i it follows that every pair of polygons is separable with a single translation
in direction θ. Next, consider the case where every pair of polygons, viewed in isolation, is
separable with a single translation in direction θ. We must show that P admits a translation
in direction θ. From theorem 4.7 it follows that for all i and j int[VH(Pi,θ)] ∩ int[VH(Pj,θ)]
= φ. Thus it is sufficient to show that if we are given M non-intersecting polygons monotonic
in a common direction θ + π/2, then they admit a translation ordering in direction θ. Let
RCH(Pi) denote the right chain of Pi, i.e., RCH(Pi) = ( , ,..., ) where  and  are
the vertices with maximum (top) and minimum (bottom) y coordinates, respectively. Clearly,
a polygon can be translated in direction θ if, and only if, its right chain can be so translated.
Hence, we need only consider the right chains. Now imagine a light source at x = + ∞ and
mark all the top vertices of the chains which are illuminated (see Figure 16). To establish that
a translation ordering exists it is sufficient to show that one of these monotonic chains can
always be translated to x = + ∞ without disturbing the others. It turns out that the chain with
the lowest (minimum y coordinate) marked top vertex can always be moved out first. Let
RCH(Pi) be the desired chain and assume it cannot be translated to x = + ∞. This means that
there must be another chain, say RCH(Pj), blocking RCH(Pi). Two cases arise depending on
how RCH(Pj) blocks RCH(Pi).

Case 1:  lies above . Because the monotonicity of the chains it that follows if RCH(Pj) is to
block RCH(Pi) then cannot be illuminated, a contradiction.

Case2:  lies below . Because of monotonicity it follows that if RCH(Pj) is to block RCH(Pi)
then  must lie above  and to the right of RCH(Pi). Now  cannot be illuminated since it is
below  and would lead to a contradiction. Therefore  must be blocked by some third chain
RCH(Pk). Furthermore, using similar arguments to the above  must lie in between  and . But
this in turn requires an unlimited number of additional blocking chains. Since we only have M
available we eventually obtain an illuminated vertex lower than , a contradiction. Q.E.D.
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Step 4: Compute VH(Q,θ + π/2).

Step 5: If P intersects VH(Q,θ + π/2)

then EXIT with ψ ← φ + π/2

else EXIT with ψ ← θ + π/2

End

Theorem 4.6: Algorithm SEPARATE determines a direction of separability for two monotone
polygons P and Q in O(n) time.

Proof: The correctness of the algorithm follows from theorem 4.5. Thus we turn to the complexi-
ty. Steps 1-3 can be performed in O(n) time using the algorithm in [29] by Preparata and
Supowit. Computing the visibility hull of Q in step 4 can be done in O(n) time with a variety
of hidden line algorithms [30]-[31]. Finally, step 5 can be performed in O(n) time using a
simple modification of the slab method of Shamos and Hoey [32] for intersecting two convex
polygons. This follows from the fact that P and VH(Q,θ + π/2) are two polygons monotonic
in direction θ and therefore their intersection can only contain a linear number of pieces. See
for example Guibas and Stolfi [33]. Q.E.D.

Just as star-shaped polygons can be sequentially interlocked but any number of them are al-
ways separable under simultaneous translations, so we can ask this question for monotone poly-
gons. Dawson [34] has shown that three monotone polygons are separable with simultaneous trans-
lations but four can interlock under simultaneous general motions (see Figure 15).

4.5:    Simple polygons

Since arbitrary simple polygons may or may not interlock in a variety of senses, it is interest-
ing to determine if a configuration of polygons does or does not interlock in any of these senses.
We illustrate some results along these lines.

Theorem 4.7: Two simple polygons P and Q are movably separable by a single translation in di-
rection θ if, and only if, int[VH(P,θ) ∩ int[VH(Q,θ)] = φ where φ is the null set.

Proof: (sufficiency) In this case we have two polygons, the interiors of which do not intersect,
and which are monotonic in a common direction θ + π/2. Thus the result follows from the
lemma 4.1. For necessity four cases suffice:

(a) A point z ∈ int(Q) lies in the interior of a pocket of VH(P). In this case, if z is translated
in direction θ it cannot exit the pocket through its lid since the lid is parallel to θ. Therefore z must
collide with P and so must Q.

(b) A point z ∉ int(Q) but z ∈ intVH[Q] lies in a pocket of VH(P). In this case if z is trans-
lated in direction θ it must collide either with P or Q. In the former sub-case we are done. In the
latter sub-case let z collide with Q at z′ ∈ Q. But now case (a) applies with z′. The last two cases
where z ∈ int[VH(P)] are similar. Q.E.D.
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Note that theorem 4.3 provides additional ways of separating the configuration of Figure 6
by simultaneous translations. Since P1 ∪ P2 and P3 ∪ P4 make up two star-shaped polygons that
can be separated with one translation. Since all four polygons are themselves star-shaped two more
translations will separate P2 from P1 and P3 from P4.

Theorem 4.3 also implies that two star-shaped polygons can be separated by translating both
P and Q simultaneously in some pairs of directions with respect to an arbitrary fixed point in the
plane. It is sufficient to guarantee that the relative motion between P and Q is correct. Accordingly,
let a* and b* be any pair of points in the plane such that L(a*,b*) intersects K(P) and K(Q). Let x
be any reference point on the plane, and consider the vectors xa*, xb* and a*b*. We can see now
that if we translate P and Q in the directions of xa* and xb* with velocities proportional to the mag-
nitudes of xa* and xb*, respectively, the correct relative motion between P and Q is maintained.
Different pairs of points a*, b* only change the relative velocity of separation. An alternate, very
elegant, proof of this result for the restricted case in which a* ∈ K(P) and b* ∈ K(Q) was given
by Dawson [27].

So much for two polygons - what about three star-shaped polygons. It turns out that as few
as three star-shaped polygons can sequentially interlock. One such example is shown in Figure 14.
A surprising result, however, due to Dawson [27] is that any finite collection of star-shaped poly-
gons can still be separated by simultaneous translations.

4.4:    Monotone polygons

Examination of Figure 14 reveals that the three polygons are monotonic in addition to being
star-shaped, and thus three monotonic polygons can be sequentially interlocked. Furthermore form
lemma 4.1 we know that two monotonic polygons are separable with the restriction that they share
a common direction of monotonicity. This restriction is removed in [28], [35] with the following
theorem.

Theorem 4.5: Given two polygons P and Q monotonic in direction θ and φ, respectively, then P
and Q are separable with a single translation in at least one of the two directions θ + π/2, φ + π/2.

This theorem immediately suggests the following algorithm for determining a direction of se-
parability for two monotone polygons.

Algorithm SEPARATE

Input: Two non-intersecting monotone polygons P = (p1, p2,..., pn) and Q = (q1, q2,..., qn).

Output: A direction ψ for separating P and Q.

Begin

Step 1: Compute the directions of monotonicity for P and Q.

Step 2: If P and Q have a common direction of monotonicity ζ,

then EXIT with ψ ← ζ + π/2

Step 3: Pick two directions of monotonicity for P and Q, say θ and φ respectively.

___>
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Figure 14: Three sequentially interlocking star-shaped polygons.

Figure 15: Four monotonic polygons interlocked under simultaneous general motions
(From Dawson [34]).
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The visibility deficiency polygons or “pockets” are of two types: lower pockets and upper
pockets. Let pi be a vertex of P that determines some pocket. If pi-1 and pi+1 do not lie above the
line collinear with the lid of the pocket then the pocket is a lower pocket. Similarly if pi-1 and pi+1
do not lie below the lid line then we obtain an upper pocket. (We assume here without loss of gen-
erality that θ is in the direction of the x axis.)

Lemma 4.3: If Lz is a straight line in the direction θ through a point z ∈ K(P) then int[VD(P,θ)]
is not visible from any point on Lz ∩ ext[VH(P,θ)].

Proof: (Refer to Figure 12) First we note that a pocket whose lid is above Lz is a lower pocket.
For if it were an upper pocket it would imply, by Jordan curve theorem that P was not star-
shaped from z, a contradiction. Similarly, a pocket whose lid is below Lz must be an upper
pocket. It follows that any point x in int(upper pocket) can only see points y lying below Lz.
Similarly, any point x in int(lower pocket) can only see points y above Lz. Q.E.D.

Theorem 4.3: Two star-shaped polygons are movably separable with a single translation.

Proof: (Refer to Figure 13) Let P and Q be two non-intersecting star-shaped polygons. Let
a ∈ K(P) and b ∈ K(Q) and construct a line L(a,b) through a,b. Let θ be the direction of this
line. Now construct VH(P,θ) and VH(Q,θ). Since P ∈ VH(P,θ) and Q ∈ VH(Q,θ), it is suf-
ficient to show that the visibility hulls can be separated. First we note that VH(P,θ) and
VH(Q,θ) are star-shaped with respect to a and b, respectively, by lemma 4.2. Next we show
that the interiors of VH(P,θ) and VH(Q,θ) do not intersect. For, let x ∈ int(Q). Then clearly
x cannot lie in P. Furthermore, if x lies in a pocket of P then by lemma 3 x is not visible from
L(a,b) ∩ ext{VH(P,θ)] and thus not visible from b which contradicts the star-shapedness of
Q. On the other hand if x lies in a pocket of Q it cannot lie in P as it would contradict the star-
shapedness of P with respect to a. Neither can it also lie in a pocket of P as it would contradict
the star-shapedness of VH(Q,θ) with respect to b. Similar arguments hold for the case where
x ∈ int(P). Thus, VH(Q,θ) and VH(P,θ) are two non-intersecting polygons monotonic in a
common direction θ+Π, and by lemma 4.1, the result follows. Q.E.D.

Theorem 4.3 also provides us with an algorithm for finding a direction of translation. All we
need to do is to find a point a ∈ K(P) and a point b ∈ K(Q). This can be done with the linear-pro-
gramming algorithm of Dyer [24].

Theorem 4.4: Given two star-shaped n-gons, a direction for separating them can be determined
in O(n) time.

Actually, all directions of separability by translation determined by points in the kernels can
be found in O(n) time. Since the kernels are convex polygons, all directions determined by two
points a ∈ K(P) and b ∈ K(Q) lie in a cone defined by the critical lines of support between K(P)
and K(Q). The kernels can be computed in O(n) time with the algorithm of Lee and Preparata [25],
and the critical lines of support can be found in O(n) time using the “rotating calipers” [22]. It is
obvious that the above set of directions for separability is not the complete set. All directions for
separating two arbitrary simple polygons by a single translation can however be determined in O(n
log n) time [26].
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Figure 12: Illustrating the proof of lemma 3.

Figure 13: Two star-shaped polygons are separable with a single translation.
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Figure 10: Illustrating the proof of lemma 2.

Figure 11: The visibility hull of P in direction theta.
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Theorem 4.1:  (G. Strang [21]) A convex polygon P can pass through a slit of length L, if and only
if, w ≤ L.

We remark here that the width of a convex n-gon can be computed in O(n) time using the
“rotating calipers” [22], [23] and thus we obtain the following theorems.

Theorem 4.2: Given a convex n-gon P and a slit I of length L, whether or not P can pass through
I can be determined in O(n) time.

We are now ready to show that two completely externally visible polygons can interlock. One
such example is illustrated in Figure 9. First we construct a polygon P with a large deficiency poly-
gon compared to its lid of length L. The lid plays the role of the slit in Figure 8. Next we construct
a convex polygon of width w > L in the interior of the deficiency polygon. From Theorem 4.1 it
follows that P and Q are interlocked. Thus we see that in terms of movable separability completely
externally visible polygons offer no additional freedom over arbitrary simple polygons in this
sense.

4.3:    Star-shaped polygons

We can ask the same question as in section 4.2 for star-shaped polygons. It turns out that two
star-shaped polygons are always separable with a single translation, which we now prove.

The following lemma is proved in [12].

Lemma 4.1: Two polygons monotonic in a common direction θ, are movably separable with a sin-
gle translation in a direction orthogonal to θ.

Lemma 4.2: If P is star-shaped with respect to a point z and if x,y are two points on bd(P) such
that (x,y) ∈ ext(P), then the polygon P* = P ∪ R, where R is the bounded exterior of P is also star-
shaped with respect to z.

Proof: (Refer to Figure 10) Let w be a point in R and construct the half line emanating from z
and passing through w, denoted by ray(z,w). Since z lies in the kernel K(P), ray(z,w) can in-
tersect bd(P) only at one point, say w′. Νow, the creation of P* involves substituting the
boundary of P between x and y by [x,y]. That for all w ∈ R, the corresponding w′ must lie
on this section of bd(P), follows from the fact that x and y are visible from z. Since w′ is re-
moved in the creation of P* it follows that w is visible from z in P*. Since this is true for all
w, P* remains star-shaped with respect to z. Q.E.D.

Definition: Given a simple polygon P and a direction θ, the visibility hull of P in direction θ,
denoted by VH(P,θ), is the set obtained by taking the union of P with all line segments [a,b] par-
allel to θ such that a,b ∈ P. Note that VH(P,θ) is monotonic with respect to a direction orthogonal
to θ. The visibility hull of P is the union of P with some “pockets” as illustrated in Figure 11, and
can be interpreted as the region bounded by the portions of P visible from ± ∞ in direction θ. Note
that VH(P,θ) may have new vertices which are not vertices of P.

Definition: The visibility deficiency of P, denoted by VD(P,θ), in direction θ is the closure of
the set-difference between P and the visibility hull of P.
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Figure 8: Passing a convex polygon through a slit.

Figure 9: Two completely externally visible polygons can interlock.
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Definition: A vertex pi of a polygon P is said to be unimodal if the euclidean distance function
d(pi, pi+1), d(pi, pi+2),..., d(pi, pi-1) has only one local maximum.

Definition: A polygon P in unimodal if every vertex of P is unimodal.

Note that at first glance there appears to be a close relationship between unimodal and convex
polygons. In fact there is no relationship whatsoever. For a detailed treatment of this topic and other
definitions of unimodality the reader is referred to [18].

Definition: A polygon P is monotone if there exists a direction θ such that the two opposite ex-
treme vertices in direction θ partition the polygon into two polygonal chains each of which, when
traversed, yields a monotonically increasing projection onto a line in direction θ.

4.  Some Movable Separability Problems in the Plane

4.1:    Isothetic rectangles

Consider following the uppermost path in the graph of Figure 7 starting with isothetic rect-
angles. As mentioned earlier, Guibas and Yao [8] have show that for a set of n isothetic rectangles
all directions θ admit a translation ordering and such an ordering can be computed in O(n log n)
time. This property was shown by Guibas and Yao [8] to remain true for sets of convex polygons.
Thus there appears to be no basic difference in the separability properties between these two fam-
ilies of polygons. Actually, there is a slight difference worth mentioning.

Referring to Figure 2 we note that sorting the projections of the support vertices on l to obtain
a translation ordering in direction l can be viewed as sweeping a line in the opposite direction and
identifying the support vertices in the order in which the “sweep line” traverses them. This idea
will be referred to as the line-sweep heuristic and it is, in fact, the first idea that a person invariably
proposes for obtaining a translation ordering of convex polygons. Although the line-sweep heuris-
tic can fail even for rectangles it is interesting to ask whether there exist classes of objects for which
it is guaranteed to produce a valid ordering, In fact, one such class is precisely the set of isothetic
rectangles when l is restricted to the ±x and ±y directions. In this particular case the first rectangle
traversed by the “sweep line” can always be moved first. It follows that for these four directions a
translation ordering can be easily obtained by sorting the corresponding edges of the rectangles.
Thus, although the order of the complexity is not changed, the algorithm (pure and simple sorting)
is much simpler than the O(n log n) algorithms of either Guibas and Yao [8] or Ottmann and Wid-
mayer [9]. Other examples where the “sweep line” technique works successfully are given in [20].

4.2:    Completely external visible polygons

Referring to Figure 7 and moving along the graph from convex to completely external visible
polygons we encounter a dramatic change in movability properties. First we consider the problem
of passing a convex polygon through a slit (see Figure 8). Let P = (p1, p2,..., pn) be a convex poly-
gon. Let L be the length of the slit.

Definition: The width w of a convex polygon P is the minimum distance between parallel lines
of support of P.
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Figure 7: A hierarchy of simple polygons.
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3.  A Hierarchy of Simple Polygons

Let P = (p1, p2,..., pn) be a simple polygon. i.e., we are given a list of its vertices, in clockwise
order, along with their cartesian coordinates. We assume the polygon is in standard form, i.e., the
vertices are distinct and no three consecutive vertices are collinear. A pair of vertices, say pi pi+1,
defines the ith edge of P. The sequence of vertices and edges forming the boundary of a polygon P,
and denoted by bd(P), partitions the plane into two open regions: one bounded, termed the interior
of P and denoted by int(P), and the other the unbounded exterior of P, denoted ext(P). When we
consider a collection of polygons, each polygon is assumed to contain n vertices to simplify nota-
tion.

We saw with the example of Figure 2 that any finite collection of rectangles, no matter how
large, is movably separable under translations. In fact, all fixed directions admit a translation or-
dering. On the other hand, from Figure 3 (c) we see that two arbitrary simple polygons are suffi-
cient to form an interlocked set. Now, rectangles and simple polygons are extremes among a hier-
archy of families of simple polygons of varying degrees of shape complexity. An example of hier-
archy of nine families of polygons is given by the directed graph in Figure 7. A node in this graph
represents a family of polygons. A directed path connects node A to node B (A → B) if, and only
if, polygons belonging to family A also belong to family B. For example, convex polygons are star-
shaped but not vice-versa. It is thus interesting to follow different paths along this graph and to
determine the places along the path where movability properties change. Actually, the graph in
Figure 7 can be enlarged by the inclusion of a score of additional families of polygons [17] but this
set will suffice to illustrate the point. Before considering movability we provide some definitions.

Definition: The convex deficiency of a polygon P is a set of deficiency polygons D1, D2,..., Dk
obtained by subtracting int(P) from the convex hull of P and deleting the edges of P that are also
edges of the convex hull of P. (Deficiency polygons are also more affectionately termed pockets.)

Definition: The edge of a pocket of P which is not also an edge of P is the lid of the pocket.

Definition: A polygon P is completely visible from edge e if for every point x in e and every
point y in P, the line segment [x,y] lies in P.

Definition: A polygon P is completely externally visible if every deficiency polygon of P is
completely visible from its lid

Definition: A polygon P is strongly visible from edge e if there edge-exists a point x in e such
that for all y in P, the line segment [x,y] lies in P.

Definition: A polygon P is strongly externally visible if every deficiency polygon P is strongly
visible from its lid.

Definition: A polygon P is weakly externally visible if every deficiency polygon is edge-visible
from its lid

Definition: A polygon P is said to be star-shaped if there exists a region K in P, termed the ker-
nel of P, such that for all x∈K and all y∈P the line segment [x,y] lies in P.
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(a) Initial configuration.

P2

(b) After simultaneous translation of P1 and P2 in the +y direction.
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Figure 6: A set of simultaneously separable polygons.



- 7 -

translate P1 and P2 as a block in the +y direction until the convex hull of P1 and P2 does not intersect
the convex hull of P3 and P4. Subsequently P1 and P4 can be translated in the -x direction and P2
and P3 can be translated in the +x direction. This example leads us to the following definition.

Definition: A set of objects IP is simultaneously movably separable if P is separable only by
moving a subset of P, of cardinality greater than one, simultaneously. (Note that a motion with ve-
locity zero clearly cannot count as a motion).

Definition: A set of objects P which is not movable separable is said to be interlocked.

P2

P3

P4

P5

P6

P1

Figure 4:   A set of sequentially movably separable polygons.

Figure 5:   A set of four movably separable edge-visible polygons which is not sequentially separable.

P1

P2

δ

P3

P4
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These concepts are illustrated in Figure 3. In Figure 3 (a) we see that linear separability im-
plies movable separability. For example, either P or Q can be translated to infinity in a direction
parallel to the line of separability. In Figure 3 (b) we note first, that movable separability does not
imply linear separability. This follows from a well-known theorem in convexity theory [16] which
stated that “two sets are linearly separable if, and only if, their convex hulls do not intersect and
the fact that convex hull intersection need not hinder movable separability. Secondly, Figure 3 (b)
also illustrates the obvious fact that movable separability implies nonlinear separability. Finally,
Figure 3 (c) shows that nonlinear separability obviously need not imply movable separability. In
fact even a low-order polynomial discriminant function [15] such as a quadratic does not imply
movable separability. In summary we have:

linear separability ===> movable separability ===> nonlinear separability.

If we are dealing with a collection of more than two objects then a variety of different types
of movable separability is possible. Let P = {P1, P2,..., Pn} be a collection of objects. Denote an
ordering of P by P′ = {P(1), P(2),..., P(n)}, and let P′(i) = {P(i), P(i+1),..., P(n)}.

Definition: A set of objects P is sequentially movably separable if there exists an ordering P′
such that for i = 1,2,...,n-1, P(i) can be moved an arbitrary distance away from P′(i+1) without col-

liding with any object in P′(i+1).

Figure 4 illustrates a set of sequentially movably separable polygons. Here P′ = {P2, P3, P4,
P5, P6, P1} and P2 through P6 can be moved to infinity with two translations each.

Definition: If there exists a set of motions on a collection of objects P such that for each object
Pi, i = 1,2,...,n, Pi can attain an arbitrary large distance from {P - Pi} without collisions, then P is
said to be movably separable.

Figure 5, a variation of an example due to Chazelle, et al., [13], illustrates a collection of four
edge-visible polygons which are not sequentially movably separable and yet they are movably sep-
arable. Note that in Figure 5 no object can be moved to infinity without colliding with the remain-
ing objects. Yet if we allow repeated alternating translations of P1 and P2 in the +x direction then
eventually P1 and P2 lie outside the convex hull of P4 and all four polygons can be translated to
infinity. Note however that by making the separation δ, between P1 and P2, arbitrarily small we
can require an arbitrarily large number of motions for achieving separation, independent of the
number of objects. Chazelle, et al. [13] also give an example where the number of motions is ex-
ponential in the number of objects. (A polygon P is edge-visible if it contains an edge e such that
for every point x in P there exists a point y in e such that the line segment [x,y] lies in P. Here [x,y]
denotes closed line segment. Similarly, an open line segment will be denoted by (x,y)).

Note that in the example if Figure 5 an object is moved as often as required. However, sepa-
rability is still attained by moving only one object at a time. It is possible that a set of objects is
separable but only if simultaneous motions of several objects are required. One such example is
illustrated in Figure 6. This set is not sequentially movably separable. Neither is it separable with
repeated individual motions, and yet it is separable under simultaneous motions. In fact there exists
an infinite number of non-trivial sets of motions that will separate this set. One example is to first
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(a) Linearly separable polygons.
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(b) Polygons not linearly separable but movably separable.

(c) Polygons not movably separable but nonlinearly separable.

Figure 3: Illustrating the relation between linear separability, movable separability and nonlinear separability.
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fact they prove this also for a set of n convex polygons. Thus we will say that convex polygons in
the plane exhibit the translation-ordering property. A simpler O(n log n) algorithm for solving this
problem was later discovered by Ottman and Widmayer [9].

This problem was generalized to consider other types of polygons, and motion besides simple
translation in [10] - [12]. One class of problems that results when convexity is relaxed concerns
“interlocking polygons”. Thus one class of problems considered in [10] - [12] deals with determi-
nation of whether a given collection of polygons is “movably separable” in a specified sense. Some
of the results of [10] - [12] were also independently obtained by Chazelle et al. [13] for the special
case of isothetic polygons.

2.  Movable Separability of Sets: Definitions

In this section we define some notions of movable separability and relate them to the well-
known concepts of linear and nonlinear separability of sets [14] - [15], [19].

Definition: An object P can be moved from position A to position B if there exists a finite se-
quence of translations and rotations (possibly simultaneous) of P that carries P from A to B.

Definition: Let two objects P and Q be moved during a time interval starting at t1 and ending at

t2. We say that a collision occurs between P and Q if there exists a time t such that t1 ≤ t ≤ t2 and
the interiors of P and Q intersect.

Definition: Two objects are movably separable if one of them can be moved an arbitrary dis-
tance without colliding with the other.

If two objects are not movably separable then they are said to be interlocked. Note that a va-
riety of definitions of movable separability are immediately apparent by specifying the type of mo-
tion considered. The simplest might be a single translation. A more complicated case may allow
many translations but no rotations, and going further, any number of both types of displacements
may be allowed but not simultaneously.

Note that when we speak of distance between two objects or between one object and a col-
lection of objects we are measuring the distance between two sets, say S1 and S2. The distance used
here refers to the minimum euclidean distance between an element in S1 and an element in S2.

It is interesting to see what the relation is between movable separability and the more well-
known concepts of separability in discriminant analysis [14], [15], [19].

Definition: Let P and Q be two sets in Euclidean d-space, ℜd. We say that P and Q are linearly

separable if there exists a hyperplane H that partitions ℜd into two half-spaces H(P) and H(Q) such
that P is contained in H(P) and Q is contained in H(Q).

Definition: P and Q are nonlinearly separable if there exists a partition of ℜd into two non-in-
tersecting regions R(P) and R(Q) containing P and Q, respectively.
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1.  Introduction

Consider a large one-room apartment with a corridor connecting it to the outside world, as
illustrated in Figure 1. The corridor is assumed to have unit width and a right-angled corner. We
can ask what is the figure of the largest area that can be moved out of the apartment and into the
street through the connecting corridor. This is known as the sofa problem and has received some
attention in the mathematics and computing literature [1] - [5]. Note that the room is as large as
desired and we assume it is no obstacle to position the desired object into the first “wing” of the
corridor. Thus we are really concerned only with getting by the corner of the corridor. An obvious
lower bound on the solution to this problem is unity since a square of unit area can be moved out
with two translations. However, we can find non-convex figures with areas as large as
(π/2) + (2/π) ≅ 2.2074 that can be moved out with a sequence of translations and rotations [5]. A
variety of such problems present themselves if we vary the shape of the hallway (such as allowing
left-angled as well as right-angled corners) and restrict the class of objects considered [5]. For
example, we may ask for the largest (in some sense) convex, or star-shaped figure. We can also
ask whether a given object or figure can be moved out of a specified apartment. Furthermore, we
can ask for a sequence of motions that will free the object if such an action is possible. All these
problems belong to a large family of problems which in this paper are termed movable separability
of sets. While movable separability can be investigated for quite general sets, in this paper we con-
sider the sets to be simple objects such as line segments, circles, and simple polygons in the plane
or spheres and polyhedra in three dimensions. We also distinguish between movable separability
problems and collision avoidance problems in robotics such as the findpath problem [6]. For a sur-
vey of those problems and their relation to computational geometry the reader is referred to [7]. It
is difficult to formally define the class of problems labeled “movable separability”. Nevertheless
the problems considered here are in some sense more concerned with the notion of separability
than the typical collision avoidance problem found in robotics.

As another example of a class of movable separability problems let us look at the problem of
translating rectangles. Consider a set of non-intersecting rectangles in the plane whose sides are
parallel to the x and y axes, as illustrated in Figure 2. Such rectangles are termed isothetic. A prob-
lem that arises in graphics and VLSI [8] is that of translating the entire collection by some common
vector to a new location while respecting two constraints: first, the rectangles can only be moved
one at a time and, second, during the entire process no collisions are allowed between the rectan-
gles. A collision occurs if at some instant in time the interiors of the rectangles intersect. One prob-
lem that arises immediately is whether such a translation ordering property holds for all sets of rect-
angles and all directions. Another problem is the efficient computation of such an ordering if it ex-
ists. This is clearly a separability problem since each rectangle being translated is also being
separated.

Referring to Figure 2, let l denote the desired direction of translation and construct that line
of support to each rectangle perpendicular to l that maximizes the displacement in direction l.
These lines of support intersect the rectangles A,B,C, and D at the support vertices a, b, c, and d,
respectively. It is tempting, at first glance, to claim that a translation ordering can be obtained by
sorting the projections of the support vertices on l and that therefore B can be moved first. Note
that this is not the case, however, since this method would require D to move second which is im-
possible since it is blocked by C. Guibas and Yao [8] have shown that given a set of n rectangles
and a direction l, a translation ordering always exists and can be computed in O(n log n) time. In
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Figure 1: Moving Furniture out of the apartment.
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Figure 2: Rectangle D cannot be translated in directionl before rectangle C, and yet d occurs before c
               on line l.
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Abstract

Spurred by developments in spatial planning in robotics, computer graphics, and
VLSI layout, considerable attention has been devoted recently to the problem of mov-
ing sets of objects, such as line segments and polygons in the plane to polyhedra in
three dimensions, without allowing collisions between the objects. One class of such
problems considers the separability of sets of objects under different kinds of motions
and various definitions of separation. This paper surveys this new area of research in
a tutorial fashion, present new results, and provides a list of open problems and sug-
gestions for further research.
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