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vertex-visibility π − γ. Hence we have,

Theorem 4: The minimum sector edge-visibility and the minimum sector vertex-visibility prob-
lems both have complexity O(n), when the minimum σ is at most π.

It remains now to show that the condition σ  ≤  π in the two preceding theorems cannot be relaxed.
This is an immediate consequence of the following,

Theorem 5: The sector vertex-visibility problem requires Ω(n log n) time, when π < σ < 2π.

Proof: As in lemma 4, we prove the lower bound by reduction from the set equality problem.
Hence, our lower bound holds for arbitrary fixed order algebraic decision trees.

For simplicity, we will describe the reduction when σ  = 3 π / 2; the generalization should be clear.
Let ai ∈ {1,..., n}. Consider the polygon P with 3 n + 18 vertices illustrated schematically in Figure

4. Vertex vi,   1 ≤ i ≤ n by construction, has W(vi)   =
aιπ  , (ai - 1)π

+
π  .

                                                                                             2 n          2 n 2
Note that each such wedge W(vi) ⊂ (0, π) and thus constitutes a notch in the upper edge of polygon

P. The dual wedges associated with vertices w1,..., w6 cover the entire plane except for the wedge

[0, π / 2]. Thus P is σ−sector-vertex-visible if and only if the dual wedges associated with vertices
v1,..., vn do not cover the wedge [0, π / 2]. But, by construction, this holds precisely when {a1,...,

an} = {1,..., n}.

                                                                                                                                               Q.E.D.
5. Concluding remarks

Sector visibility problems constitute what may be considered the easiest external visibility prob-
lems. Though we have characterized the asymptotic complexity of many of these exactly, some
questions from within this family remain incompletely resolved. For example, what is the com-
plexity of sector edge-visibility when π  <  σ  < 2 π?
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pop S

else push [φB, φF]

φB ←  ςB

φF ←  ςF

end

We know from lemma 1 that the angles in the wedges remaining on the stack containing S at the
completion of algorithm Combine-Dual-Wedges lie in the interval [-5π, 5π]. It is now straightfor-
ward to complete the union of the dual wedges with all angles now reduced mod 2π. With this re-
duction, S partitions into O(1) ordered lists of intervals, which can be merged in O(n) time. Togeth-
er with lemma 2 and lemma 3, this completes the proof of the following:

Theorem 3: The sector edge-visibility and the sector vertex-visibility problems both have com-
plexity O(n), when σ ≤ π.

It is immediate from their definition that dual wedges decrease linearly in width with increasing σ.
This permits us to solve the minimum sector vertex-visibility problem by first using the above al-
gorithm to check if P is π-sector-vertex-visible. If this is so, then the union of the dual wedges on
the stack at completion fail to cover the plane. If the maximal uncovered wedge (which can be con-
structed in O(n) time by a simple scan) has width γ, then it is easy to see that P has minimum sector

                         Figure 4
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discontinuity. The purpose of this section is to substantiate this claim.

Superficial examination of the global wedges of support associated with the vertices of arbitrary
simple polygon, reveals little apparent structure. For example, the wedges of adjacent vertices can
intersect in an arbitrary fashion. It turns out that the useful structure is most easily seen by exam-
ining the dual wedges.

Recall that the global wedge of support of polygon P at vertex pi, W(pi), is the interval (ψB(pi),

ψF(pi)). Its σ-dual Wσ(pi) is the interval [ψF(pi) − 2π + σ,  ψB(pi)].

Lemma 5. If j > i then ψF(pi) - π < ψB(pj).

Proof. Let ς denote the direction of the ray from pi through pj. Then the existence of a chain from

pi to pj in P ensures that ψF(pi) < ς and  ψB(pj) > ς − π.
                                                                                                                                           Q.E.D.

Corollary. If j > 1 then Wσ(pj) either intersects Wσ(pi) or it contains angles strictly larger than

those of Wσ(pi).

It follows from the corollary above that we can maintain ∪ Wσ(pi) as a stack S of disjoint wedges

where the angles of successive wedges strictly increase. this construction is made precise in the
following algorithm.

Algorithm combine-dual-wedges

begin

[φB,φF] ← [ψF(p1) - 2π + δ, ψB(p1)]

j ← 2
while j ≤ n do

[ςB,ςF] ← [ψF(pj) - 2π + δ, ψB(pj)]

if [φB,φF] ∩ [ςB,ςF] ≠ 0

then φB ← min {φB, ςB}

φF ← max {φF, ςF}

 while S ≠ φ and top ∩ [φB,φF] ≠ 0

[ςB, ςF] ← top

φB ← min {φB, ςB}

φF ← max {φF, ςF}



the plane covering problem by setting Wi = [2πai/n, 2π(ai+1)/n], for 1 ≤ i ≤ n. Note that this is

closely related to the so-called measure problem also discussed by Ben-Or.
                                                                                                                                 Q.E.D.

The following theorem which summarizes the main result of this section is an immediate
conesquence of the above lemmas.

Theorem 2:  The sector vertex-visibility problem has complexity O(n log n).

In fact lemma 4 tells us something stronger than Theorem 2. In particular, if we have any hope of
achieving an O(n log n) bound on the complexity of sector visibility problems, it must come as a
result of exploiting the structure imposed by the underlying polygon on the set of visibility wedges
associated with its vertices. Of course, this is precisely what makes problems for polygonal chains
less complex than their unstructured counterparts in general. We pursue this idea in the next sec-
tion.

4. Sector visibility when σ  ≤  π

We have seen that sector edge-visibility reduces to sector vertex-visibility when σ  ≤  π. Curiously,
it is in precisely this situation that sector vertex-visibility itself exhibits a demonstrable complexity

                    Figure 3
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compute basic properties such as their intersection and common tangents. O(n log n) time is suffi-
cient for the special cases of vertical line segments [O´R], for line segments with arbitrary direc-
tions [EMPRWW], and for a set ofn translates of a simple object in the plane [Ed]. Finally, for a
set ofisothetic rectangles O(n) time suffices via linear programming [Ed].

Even more closely related to the topic of this paper is the problem of computingshortest transver-
sals of sets, when a transversal exists. In [BCETSU] O(n log n) time algorithms are given for com-
puting a shortest transversal for a family ofn lines, a family ofn line segments and a family of
convex polygons with a total ofn vertices. The algorithms are optimal for the latter two families
of objects.

Given a familyF of n convex cones, as in the visibility problem considered in this paper, determin-

ing whetherF admits a common transversal could certainly be accomplished in O(n2 log n) time
with the procedure of [EOW] or in O(n log n α(n)) time, whereα(n) is the extremely slowly grow-
ing inverse Ackermann’s function, with the more recent technique of Atallah and Bajaj [AB]. We
now show that the structure in our familyF, namely the fact that our convex cones are not arbitrary
and independent but with their apexes anchored on the vertices of a simple polygon, allows us to
solve this transversal problem in O(n logn) time. In the next section, this result is improved to O(n)
time.

In the remainder of this section, we show that the problem of finding a wedge, of width at mostσ
< 2π, that spans a collection ofn wedges, has inherent worst-case complexity Θ(n log n). We in-
troduce a dual wedge cover problem that simplifies some of the arguments. LetW = {W1,...,Wn}

be a set of wedges. The setW is said tocover the plane if for every angleψ, 0  ≤ ψ < 2π, there exists

a wedgeWi ∈ W such thatψ ∈ Wi. If W = (ψB, ψF) is an (open) wedge thenWσ denotes the

(closed) wedge [ψF − 2π + σ,  ψB]. Wσ, which we call theσ-dual of wedge W, can be viewed as
a generalized complement of wedgeW. Furthermore,

Lemma 3: The setW = {W1,...,Wn} admits a spanning wedge of widthσ if and only if the setWσ

= {W1
σ,...,Wn

σ} does not cover the plane.

Proof: This follows immediately from the observation that the wedge (ψ, ψ + σ) spansW if and

only if ψ  ∉  ∪ Wi
σ.

                                                                   Q.E.D.

Lemma 4. The plane covering problem for wedges has worst case time complexity Θ(n log n).

Proof. An O(n log n) solution follows by simply lexicographically sorting the wedges (viewed as
ordered pairs) and scanning the resulting list. TheΩ(n log n) lower bound, which says, in effect,
that this sorting step is unavoidable in general, holds for arbitrary fixed order algebraic decision
trees [B-O]. Ben-Or [B-O] shows that determining if a setA = {a1,..., an} is identical to the setB

= {b1,...,bn} requiresΩ(n log n) time on this model. This set equality problem can be reduced to



It may be suspected that to determine the sector edge-visibility of a given polygon it suffices to
determine its sector vertex-visibility. In fact, this is the case for bothε− and 2π-sector visibility
[TA], [PSu]. This is not true in general, however. Nevertheless, whenσ ≤ π, we can reduce the
sector edge-visibility problem to a closely related sector vertex-visibility problem.

Lemma 2: Let P be any polygon and letW be any wedge of sight lines of width at mostπ, thenP
is W-edge-visible if and only if the polygonP", formed fromP by subdividing each of its edges, is
W-vertex-visible.

Proof: It suffices to observe that if both of the endpoints of some edge ofP" areW-visible then so
is the entire edge. We know, from [AT], that if the endpoints of any edgee of P" areW-visible then
e is edge-visible.

If supporting rays fromW at each of the endpoints ofe diverge then at least one of these must sup-
port all of the points ofe (here we use the fact that one of the two end points ofe must be a subdi-
vision point). Alternatively, it is easy to see thate isW ´-edge-visible for some wedgeW ´ bounded
by two rays ofW and satisfying |W ´| <π. Since the width ofW is at mostπ, it follows thatW ´ ⊂
W, and hencee is W-edge-visible.
                                                                                                                                           Q.E.D.

Note that lemma 2 does not hold for wedges of width greater thanπ. Figure 3 illustrates a polygon
P and a visibility wedgeW such that each vertex ofP, includingv, isW-visible, and yet the shaded
edge is notW-visible.

3. The sector edge-visibility problem

In section 1 we introduced the sector edge- and vertex-visibility problems. In section 2 we showed
that, whenσ ≤ π, sector edge-visibility reduces to sector vertex-visibility. In this section we focus
on the problem of sector vertex-visibility. Before addressing the general case, it is instructive to
review the case whereσ = π, what we originally called weak visibility from a line. The problem of
sector vertex-visibility in this case can be interpreted as a transversal problem; specifically does
the collection {Wp(v) | v ∈ V} (where V denotes the set of vertices ofP and eachWp(v) is now

viewed as a sector of the plane) admit a common transversal. In general, a familyF of subsets of
the plane is said to admit acommon transversal if there exists a straight lineL which intersects ev-
ery member ofF.

Common transversals for families of convex sets have been investigated for some time in both the
mathematics [Gr], [Le] and computer science [AB], [AW1], [AW2], [Ed], literatures. In the latter,
the more aggressive termstabber is more often used fortransversal. Transversals in the plane find
application in several areas including line-fitting [O´R] and updating triangulations [ET]. Edels-
brunner, Overmars and Wood [EOW] develop a method for planar visibility problems that yields

a procedure for computing transversals forF, a family ofsimple objects, in O(n2 logn) time, where
n is the cardinality ofF. By simple objects, it is meant those objects that have an O(1) storage de-
scription each, and which are such that, for every pair of such objects, constant time suffices to



else z ← top
            pop S

while S ≠ φ and side (top, z, pj) > 0

w ← intersect (line(top, z); line(pj-1,pj))

insert w on [pj-1,pj]

 tB(w) ← z
z ← top

                      pop S

tB(pj) ← z

            push z
j ← j + 1

end

The correctness of Algorithm Back-Tangents follows from a straightforward case analysis similar
to that of Melkman [M], together with the invariant that the elements of S followed by pj-1 describe

the convex hull of the polygonal chain C[p1,...,pn-1]. It is also straightforward to confirm that the

algorithm runs in O(n) steps and inserts O(n) new vertices into the edges of C. We summarize the
result of this section with the following theorem.

Theorem 1: Given a polygon P, linear time suffices to construct a refinement P ´ of P with the
property that given any point x of P ´ and its associated edge, the wedge of support of P at x can be
determined in O(1) time.
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P at x. Let W(x) = (ψB(x),ψF(x)). By the maximality of W(x) it follows that both ray(x,ψB(x)) and

ray(x,ψF(x)) intersect P - {x}. Let tB(x) (respectively, tF(x)) be referred to as the back (respective-
ly, forward) tangent point from x (see Figure 2). With this notation, it is clear that P is W-edge-
visible if and only if for every point x ∈ P there is a ψ �∈Wp(x) and a ψ´ ∈ W such that ψ ≡ ψ´ (mod

2π). If this is the case, we say that W spans the collection {Wp(x) | x ∈ P}.

In this section, we consider the efficient computation of Wp(x) for all points x of a given polygon

P. We assume without loss of generality that P is edge-visible; in fact, if this is not the case, it will
be detected as part of the algorithm.

It will suffice to show how to determine tB(x) for all points x of P; a symmetric algorithm can be

used to construct tF(x), and hence complete the determination of Wp(x). The algorithm proceeds

by refining P, through the addition of new vertices on some of its edges, and determining tB(x) for
each vertex v of this refined polygon. The new vertices are chosen in such a way that for an arbi-

trary non-vertex point x on P, tB(x) = tB(v), where v is the vertex following x on the refined chain.

The algorithm is most easily described as a simple modification of the on-line convex hull algo-
rithm for simple polygonal chains due to Melkman [M]. Let P = C[p1,...,pn+1] be a simple poly-

gon. Suppose, without loss of generality, that p1 is a vertex of the convex hull of P. If x1,x2 and x3
ar three points then the function side(x1,x2,x3) takes the value 1, 0, or -1 depending on whether x3
is to the right of, collinear with, or to the left of the line through x1 and x2 and directed from x1 to

x2. The algorithm maintains a stack S of points (initially empty). The operations push and pop mod-

ify S in the obvious way. The variable top refers to the top element of S.

Algorithm back-tangents

begin
push p1

tB(p2) ← p1
j ← 3
while j ≤ n do

if side (top, pj-1, pj) ≤ 0

then if side (pj-2, pj-1, pj) ≥ 0

then HALT {pj-1 is not weakly externally visible}

else tB(pj) ← pj-1
                         push pj-1

 j ← j + 1



2. [Sector (edge/vertex)-visibility problem]
Given a polygon P and an angle σ, 0  ≤ σ < 2π, determine whether P is σ-sector-(edge/
vertex)-visible, and if so describe all wedges W that realize this sector visibility.

3. [Minimum sector (edge/vertex)-visibility problem]
Given a polygon P, determine the minimum σ for which P is σ-sector-(edge/vertex)-
visible.

We show that the inherent (worst case) complexity of answering the sector (edge/vertex)-visibility
problem exhibits a curious discontinuity. When σ ≤ π or σ = 2π the complexity is Θ(n), yet when
π < σ < 2π it has an Ω(n log n) lower bound. Furthermore, when σ ≤ π, in at most O(n) additional
time a linear size description of all wedges realizing the specified sector visibility can be construct-
ed, that permits wedge visibility queries to be answered in O(log n) time per query. The minimum
sector (edge/vertex)-visibility problem inherits the same complexity bounds; it has a Θ(n) solution
when the minimum is at most π and an Ω (n log n) lower bound otherwise.

2. Determining wedges of support

If P = C[p1,...,pn+1] is a polygon and x is any point of P we define angle(x) to be the external angle

of P at point x. (In particular, angle(x) = π for all points of P which are not vertices.). The local

wedge of support of P at point x, denoted Wp
*(x), is given by (θB(x), θF(x)) where θB(p1) is the

angle in [0,2π] formed by the ray with endpoint p1 passing through pn-1,  θB(pi) = θB(pi-1) + an-

gle(pi-1) - π, for i > 1, θB(x) = θB(pi), if x ∈ int([pi-1,pi]), and θF(x) = θB(x) + angle(x), for all x

in P.

Note that by this definition the local wedge of support of a point is dependent on the choice of ini-
tial vertex p1. The redundancy evident in the representation of angles, though hard to motivate

here, is exploited in subsequent algorithms. This redundancy is limited, however, by the fact that
polygons that are vertex-visible cannot spiral too much. The following lemma quantifies this re-
dundancy.

Lemma 1. If P is vertex-visible then Wp
*(v) ⊆ (−5π, 5π), for all vertices v of P.

Proof. Suppose θB(pi) < 5π. Then it is straightforward to show that P does not admit a supporting

ray at either p1 or pi+1. The argument when θF(pi) > 5π is identical.

                                                                                                                                              Q.E.D.

If P is a polygon and x is any point of P, the global wedge of support of P at x, denoted Wp(x) (or

simply W(x) when P is understood), is the set of all angles ψ ∈ Wp
*(x) such that ray(x,ψ) supports



line L.

The above notions of external visibility have a natural unification and generalization. We refer to

arbitrary angles as sight-lines. An open fixed angular interval W of sight-lines ψ satisfying  ψB <
ψ < ψF and denoted by (ψB,ψF) is referred to as a (visibility) wedge; closed wedges are defined

similarly. We denote by |W| the (angular) width of W, namely  ψF − ψΒ. Α polygonal chain C is
said to be W-edge-visible (respectively, W-vertex-visible) for a given W, if for every point (respec-
tively, vertex) x of C there exists a ψ ∈ W such that ray(x,ψ) supports C at x. Furthermore, C is said
to be σ−sector-(edge/vertex)-visible if there exists a wedge W of width σ such that C is W-(edge/
vertex)-visible. It should be clear from the discussion above that (weak external) edge-visibility
corresponds to 2π-sector-edge-visibility, edge-visibility from a line corresponds to π−sector-edge-
visibility, and monotonicity (of chains) corresponds to ε-sector-edge-visibility, for all sufficiently
small ε > 0.

We should add here that since the completion of the work presented here, the problem of determin-
ing the shortest line segment from which a polygon is weakly externally visible has been solved in
O(n) time by Bhattacharya, Mukhopadhyay and Toussaint [BMT]. The algorithm in [BMT] can
also be used to solve the 2π-sector-edge-visibility problem considered here.

Given the framework described above, a number of natural questions arise:

1. [Wedge (edge/vertex)-visibility problem]
Given a polygon P and a wedge W of sight lines, determine whether P is W-(edge/ver-
tex)-visible.

Fig. 1: A polygon P (weak external)
edge-visible from a line L.

L

P



(with respect to P).

A point set T is said to be weakly visible from a point set S if, for each point p ∈ T, there exists a
point q ∈ S such that p and q are visible. The notion of weak visibility has received attention in
both the mathematics and computer science literature. Horn and Valentine [HV] have character-
ized L-sets in terms of weak visibility properties while such characterizations for convex, star-
shaped and other sets have been presented by Bezdek, Bezdek and Bisztriczy [BBB] and Shermer
and Toussaint [ST]. A polygon P is said to be an L-set provided that for every pair of points x, y ∈
P, there exists a third point z ∈ P (possibly dependent on x and y) such that both x and y are visible
from x. Avis and Toussaint [AT] showed that given a polygon P and a specified e of P, whether
P* is weakly visible from e can be determined in O(n) time. A more difficult problem is to deter-
mine whether there exists an edge of P from which P is weakly visible. Clearly, by applying the

algorithm in [AT] to each edge in turn the latter problem can be solved in O(n2) time. Subsequently
Sack and Suri [SS] discovered a linear-time algorithm for determining all (if any) such edges of a
given polygon. Recently, Yan Ke [Ke] considered the problem of detecting the weak visibility of
a polygon from an internal line segment. He presents an O(n log n) time algorithm that tests if a
polygon is weakly visible from some internal line segment and reports such a line segment if it ex-
ists. He also shows that the shortest such segment can be found in O(n log n) time. Finally he ad-
dresses the query version of this problem: given a query line segment S in P, is P weakly visible
from S? he shows that this question can be answered in O(log n) time after the polygon is prepro-
cessed in O(n log n) time using O(n) space.

In this paper we focus on weak external visibility of a polygon. This topic is as yet quite unexplored
compared to its internal counterpart. Toussaint and Avis [TA] considered the problem of determin-
ing if a polygon is weakly externally visible. (Since we will restrict ourselves hereafter to notions
of visibility that are both weak and external we will drop these adjectives for the sake of less cum-
bersome terminology). A polygon P is edge-visible if for each point x ∈ P there exists a ray that
supports P at x. This is equivalent to saying that P is visible from a circle at infinity (or, in fact, any
circle that properly encloses P). Toussaint and Avis [TA], using related results of [AT], show that
edge-visibility of polygons can be recognized in O(n) time. This result is proved by showing that
the edge-visibility problem is equivalent to the somewhat less constrained vertex-visibility prob-
lem: determine, for each vertex v ∈ P, if there exists a ray that supports P at v.

The notion of monotonicity, which enjoys numerous applications [PSh], [TE], [CRS] can also be
cast as a kind of external visibility problem. A polygonal chain C is said to be monotone with re-
spect to a line L if every line orthogonal to L intersects C in at most one point. Equivalently, C is
weakly visible from one point on the circle at infinity (defined by the family of sight-lines orthog-
onal to L). A polygon is monotone with respect to a line L if it can be decomposed into two chains
each of which is monotone with respect to L. Preparata and Supowit [PSu] show that monotonicity
of a polygon, in fact a description of all directions of monotonicity, can be determined in O(n) time.

Intermediate to the notions of edge-visibility and monotonicity is the notion of edge-visibility from
a line, the study of which was the starting point for the research presented here. A polygon P is
edge-visible from a line if there exists a line L in ext(P) such that P is edge-visible from L. (Equiv-
alently, P is edge-visible from a semicircle at infinity, whose points correspond to sight lines in an
interval bounded by the two orientations of L). Fig. 1 illustrates a polygon P edge-visible from a
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We consider a generalization of several notions of external visibility of simple poly-
gons, namely weak external visibility, weak external visibility from a line and mo-
notonicity, that we call sector visibility. Informally, sector visibility addresses the
question of external visibility along rays (or sight lines) whose angles are restricted
to a sector (wedge) of specified width σ. This provides an interesting measure of the
degree of external visibility of a polygon. Our framework also permits a unification
and extension of a number of previously unrelated results. Finally, our results un-
cover a curious complexity discontinuity in this family of problems: algorithms are
Θ(n) when σ  �≤ πor σ = 2π, but require Ω(n log n) time (at least), when π  <  σ  < 2π.

1. Introduction

Any sequence of n points p1,...,pn in the Euclidean plane E2 defines a polygonal chain C[p1,...,pn]

whose vertices are the points p1,...,pn and whose edges are the finite line segments [pi,pi+1], i =

1,...,n-1. A polygonal chain C[p1,...,pn+1] with p1 = pn+1 is called a polygon (or n-gon).

Semi-infinite line segments are referred to as rays. We denote by ray(x, ψ) the ray with endpoint
x and direction ψ. The ray r = ray(x, ψ) is said to support polygon P at x if r ∩ P = {x}.

A polygonal chain is simple if no non-consecutive pair of its edges intersect. A simple polygon P
has a well defined (bounded) interior (denoted by int(P)) and (unbounded) exterior (denoted by
ext(P)). We denote by P* the union of P and int(P). We assume that the point sequence defining a
given simple polygon P satisfies the property that each directed line segment [pi,pi+1] has the in-

terior of P to its left. Hereafter, polygonal chains (including polygons) will be assumed to be sim-
ple.

Two points x and y are said to be visible (with respect to a polygon P) if the interior of the line
segment [x,y] lies either completely in int(P) or completely in ext(P). If int([x,y]) ⊆ int(P) (respec-
tively, int([x,y]) ⊆ ext(P)) then x and y are said to be internally (respectively externally) visible


