
Output-Sensitive Algorithms for Computing

Nearest-Neighbour Decision Boundaries?

David Bremner1, Erik Demaine2, Jeff Erickson3, John Iacono4,
Stefan Langerman5, Pat Morin6, and Godfried Toussaint7

1 Faculty of Computer Science, University of New Brunswick, bremner@unb.ca
2 MIT Laboratory for Computer Science, edemaine@mit.edu

3 Computer Science Department, University of Illinois, jeffe@cs.uiuc.edu
4 Polytechnic University, jiacono@poly.edu

5 Chargé de recherches du FNRS, Université Libre de Bruxelles,

stefan.langerman@ulb.ac.be
6 School of Computer Science, Carleton University, morin@cs.carleton.ca
7 School of Computer Science, McGill University, godfried@cs.mcgill.ca

Abstract. Given a set R of red points and a set B of blue points, the

nearest-neighbour decision rule classifies a new point q as red (respectively,

blue) if the closest point to q in R ∪ B comes from R (respectively, B).

This rule implicitly partitions space into a red set and a blue set that are

separated by a red-blue decision boundary. In this paper we develop output-

sensitive algorithms for computing this decision boundary for point sets on

the line and in R
2. Both algorithms run in time O(n log k), where k is the

number of points that contribute to the decision boundary. This running

time is the best possible when parameterizing with respect to n and k.

1 Introduction

Let S be a set of n points in the plane that is partitioned into a set of red points

denoted by R and a set of blue points denoted by B. The nearest-neighbour deci-

sion rule classifies a new point q as the color of the closest point to q in S. The

nearest-neighbour decision rule is popular in pattern recognition as a means of
learning by example. For this reason, the set S is often referred to as a training

set.

Several properties make the nearest-neighbour decision rule quite attractive,
including its intuitive simplicity and the theorem that the asymptotic error rate

of the nearest-neighbour rule is bounded from above by twice the Bayes error

rate [6, 8, 16]. (See [17] for an extensive survey of the nearest-neighbour de-
cision rule and its relatives.) Furthermore, for point sets in small dimensions,

there are efficient and practical algorithms for preprocessing a set S so that the

nearest neighbour of a query point q can be found quickly.

? This research was partly funded by the Alexander von Humboldt Foundation and The

Naturals Sciences and Engineering Research Council of Canada.

The nearest-neighbour decision rule implicitly partitions the plane into a red

set and a blue set that meet at a red-blue decision boundary. One attractive as-

pect of the nearest-neighbour decision rule is that it is often possible to reduce
the size of the training set S without changing the decision boundary. To see

this, consider the Voronŏı diagram of S, which partitions the plane into convex
(possibly unbounded) polygonal Voronŏı cells, where the Voronŏı cell of point

p ∈ S is the set of all points that are closer to p than to any other point in S (see

Figure 1.a). If the Voronŏı cell of a red point r is completely surrounded by the
Voronoi cells of other red points then the point r can be removed from S and

this will not change the classification of any point in the plane (see Figure 1.b).

We say that these points do not contribute to the decision boundary, and the
remaining points contribute to the decision boundary.

(a) (b)

Fig. 1. The Voronŏı diagram (a) before Voronŏı condensing and (b) after Voronŏı con-

densing. Note that the decision boundary (in bold) is unaffected by Voronŏı condensing.

Note: In this figure, and all other figures, red points are denoted by white circles and blue

points are denoted by black disks.

The preceding discussion suggests that one approach to reducing the size
of the training set S is to simply compute the Voronŏı diagram of S and re-

move any points of S whose Voronŏı cells are surrounded by Voronŏı cells of

the same color. Indeed, this method is referred to as Voronŏı condensing [18].
There are several O(n log n) time algorithms for computing the Voronŏı diagram

a set of points in the plane, so Voronŏı condensing can be implemented to run

in O(n log n) time.8 However, in this paper we show that we can do significantly
better when the number of points that contribute to the decision boundary is

small. Indeed, we show how to do Voronŏı condensing in O(n log k) time, where
k is the number of points that contribute to the decision boundary (i.e., the

number of points of S that remain after Voronŏı condensing). Algorithms, like

8 Historically, the first efficient algorithm for specifically computing the nearest-

neighbour decision boundary is due to Dasarathy and White [7] and runs in O(n4)
time. The first O(n log n) time algorithm for computing the Voronŏı diagram of a set

of n points in the plane is due to Shamos [15].

these, in which the size of the input and the size of the output play a role in the

running time are referred to as output-sensitive algorithms.

Readers familiar with the literature on output-sensitive convex hull algo-

rithms may recognize the expression O(n log k) as the running time of optimal
algorithms for computing convex hulls of n point sets with k extreme points,

in 2 or 3 dimensions [2, 4, 5, 13, 19]. This is no coincidence. Given a set of n
points in R

2, we can color them all red and add three blue points at infinity (see
Figure 2). In this set, the only points that contribute to the nearest-neighbour de-

cision boundary are the three blue points and the red points on the convex hull
of the original set. Thus, identifying the points that contribute to the nearest-

neighbour decision boundary is at least as difficult as computing the extreme

points of a set.

Fig. 2. The relationship between convex hulls and decision boundaries. Each vertex of the

convex hull of R contributes to the decision boundary.

Observe that, once the size of the training set has been reduced by Voronŏı

codensing, the condensed set can be preprocessed in O(k log k) time to answer
nearest neighbour queries in O(log k) time per query. This makes it possible

to do nearest-neighbour classifications in O(log k) time. Alternatively, the algo-

rithm we describe for computing the nearest neighbour decision boundary ac-
tually produces an explicit description of the boundary (of size O(k)) that can

be preprocessed in O(k) time by Kirkpatrick’s point-location algorithm [12] to

allow nearest neighbour classification in O(log k) time.

The remainder of this paper is organized as follows: In Section 2 we describe
an algorithm for computing the nearest-neighbour decision boundary of points

on a line that runs in O(n log k) time. In Section 3 we present an algorithm for
points in the plane that also runs in O(n log k) time. Finally, in Section 4 we

summarize and conclude with open problems.

2 A 1-Dimensional Algorithm

In the 1-dimensional version of the nearest-neighbour decision boundary prob-

lem, the input set S consists of n real numbers. Imagine sorting S, so that

S = {s1, . . . , sn} where si < si+1 for all 1 ≤ i < n. The decision boundary
consists of all pairs (si, si+1) where si is red and si+1 is blue, or vice-versa. Thus,

this problem is solveable in linear-time if the points of S are sorted. Since sorting

the elements of S can be done using any number of O(n log n) time sorting algo-
rithms, this immediately implies an O(n log n) time algorithm. Next, we give an

algorithm that runs in O(n log k) time and is similar in spirit to Hoare’s quicksort
[11].

To find the decision boundary in O(n log k) time, we begin by computing the

median element m = sdn/2e in O(n) time using any one of the existing linear-
time median finding algorithms (see [3]). Using an additional O(n) time, we

split S into the sets S1 = {s1, . . . , sdn/2e−1} and S2 = {sdn/2e+1, . . . , sn} by

comparing each element of S to the median element m. At the same time we
also find sdn/2e−1 and sdn/2e+1 by finding the maximum and minimum elements

of S1 and S2, respectively. We then check if (sdn/2e−1, m) and/or (m, sdn/2e+1)
are part of the decision boundary and report them if necessary.

At this point, a standard divide-and-conquer algorithm would recurse on

both S1 and S2 to give an O(n log n) time algorithm. However, we can improve
on this by observing that it is not necessary to recurse on a subproblem if it

contains only elements of one color, since it will not contribute a pair to the de-

cision boundary. Therefore, we recurse on each of S1 and S2 only if they contain
at least one red element and one blue element.

The correctness of the above algorithm is clear. To analyze its running time
we observe that the running time is bounded by the recurrence

T (n, k) ≤ O(n) + T (n/2, l) + T (n/2, k − l) ,

where l is the number of points that contribute to the decision boundary in S1

and where T (1, k) = O(1) and T (n, 0) = O(n). An easy inductive argument

that uses the concavity of the logarithm shows that this recurrence is maximized
when l = k/2, in which case the recurrence solves to O(n log k) [5].

Theorem 1 The nearest-neighbour decision boundary of a set of n real numbers

can be computed in O(n log k) time, where k is the number of elements that con-

tribute to the decision boundary.

3 A 2-Dimensional Algorithm

In the 2-dimensional nearest-neighbour decision boundary problem the Voronŏı

cells of S are (possibly unbounded) convex polygons and the goal is to find all
Voronŏı edges that bound two cells whose defining points have different col-

ors. Throughout this section we will assume that the points of S are in general

position so that no four points of S lie on a common circle. This assumption is
not very restrictive, since general position can be simulated using infinitesmal

perturbations of the input points.

It will be more convenient to present our algorithm using the terminology

of Delaunay triangulations. A Delaunay triangle in S is a triangle whose vertices

(v1, v2, v3) are in S and such that the circle with v1, v2 and v3 on its boundary
does not contain any point of S in its interior. A Delaunay triangulation of S is a

partitioning of the convex hull of S into Delaunay triangles. Alternatively, a De-

launay edge is a line segment whose vertices (v1, v2) are in S and such that there
exists a circle with v1 and v2 on its boundary that does not contain any point of

S in its interior. When S is in general position, the Delaunay triangulation of S
is unique and contains all triangles whose edges are Delaunay edges (see [14]).

It is well known that the Delaunay triangulation and the Voronoi diagram are

dual in the sense that two points of S are joined by an edge in the Delaunay
triangulation if and only if their Voronoi cells share an edge.

We call a Delaunay triangle or Delaunay edge bichromatic if its set of defining
vertices contains at least one red and at least one blue point of S. Thus, the

problem of computing the nearest-neighbour decision boundary is equivalent to

the problem of finding all bichromatic Delaunay edges.

3.1 The High Level Algorithm

In the next few sections, we will describe an algorithm that, given a value κ ≥ k,
finds the set of all bichromatic Delaunay triangles in S in O((κ2 +n) log κ) time,

which for κ ≤ √
n simplifies to O(n log κ). To obtain an algorithm that runs in

O(n log k) time, we repeatedly guess the value of κ, run the algorithm until we
find the entire decision boundary or until it determines that κ < k and, in the

latter case, restart the algorithm with a larger value of κ. If we ever reach a point

where the value of κ exceeds
√

n then we stop the entire algorithm and run an
O(n log n) time algorithm to compute the entire Delaunay triangulation of S.

The values of κ that we use are κ = 22i

for i = 0, 1, 2, . . . , dlog log ne. Since

the algorithm will terminate once κ ≥ k or κ ≥ √
n, the total cost of all runs of

the algorithm is therefore

T (n, k) =

dlog log ke∑

i=0

O(n log 22i

) =

dlog log ke∑

i=0

O(n2i) = O(n log k) ,

as required.

3.2 Pivots

A key subroutine in our algorithm is the pivot9 operation illustrated in Figure 3.
A pivot in the set of points S takes as input a ray and reports the largest circle

whose center is on the ray, has the origin of the ray on its boundary and has

no point of S in its interior. We will make use of the following data structuring
result, due to Chan [4]. For completeness, we also include a proof.

Fig. 3. A pivot operation.

Lemma 1 (Chan 1996) Let S be a set of n points in R
2. Then, for any integer

1 ≤ m ≤ n, there exists a data structure of size O(n) that can be constructed in

O(n log m) time, and that can perform pivots in S in O(n
m log m) time per pivot.

Proof. Dobkin and Kirkpatrick [9, 10] show how to preprocess a set S of n points

in O(n log n) time to answer pivot queries in O(log n) time per query. Chan’s data

structure simply partitions S into n/m groups each of size m and then uses the
Dobkin-Kirkpatrick data structure on each group. The time to build all n/m data

structures is n
m ×O(m log m) = O(n log m). To perform a query, we simply query

each of the n/m data structures in O(log m) time per data structure and report

the smallest circle found, for a query time of n
m × O(log m) = O(n

m log m).

In the following, we will be using Lemma 1 with a value of m = κ2, so

that the time to construct the data structure is O(n log κ) and the query time is
O(n

κ2 log κ). We will use two such data structures, one for performing pivots in

the set R of red points and one for performing pivots in the set B of blue points.

3.3 Finding the First Edge

The first step in our algorithm is to find a single bichromatic edge of the Delau-
nay triangulation. Refer to Figure 4. To do this, we begin by choosing any red

9 The term pivot comes from linear programming. The relationship between a (po-

lar dual) linear programming pivot and the circular pivot described here is evident

when we consider the parabolic lifting that transforms the problem of computing a 2-

dimensional Delaunay triangulation to that of computing a 3-dimensional convex hull

of a set of points on the paraboloid z = x2 +y2. In this case, the circle is the projection

of the intersection of a plane with the paraboloid.

point r and any blue point b. We then perform a pivot in the set B along the ray

with origin r that contains b. This gives us a circle C that has no blue points in

its interior and has r as well as some blue point b′ (possibly b = b′) on its bound-
ary. Next, we perform a pivot in the set R along the ray originating at b′ and

passing through the center of C. This gives us a circle C1 that has no point of S
in its interior and has b′ and some red point r′ (possibly r = r′) on its boundary.

Therefore, (r′, b′) is a bichromatic edge in the Delaunay triangulation of S.

r

b
C

b′ r

b
C

b′

C1

r′

(a) (b)

Fig. 4. The (a) first and (b) second pivot used to find a bichromatic edge (r′, b′).

The above argument shows how to find a bichromatic Delaunay edge using
only 2 pivots, one in R and one in B. The second part of the argument also

implies the following useful lemma.

Lemma 2 If there is a circle with a red point r and a blue point b on its bound-

ary, and no red (respectively, blue) points in its interior, then r (respectively, b)

contributes to the decision boundary.

3.4 Finding More Points

Let Q be the set of points that contribute to the decision boundary, i.e., the set of

points that are the vertices of bichromatic triangles in the Delaunay triangulation

of S. Suppose that we have already found a set P ⊆ Q and we wish to either
(1) find a new point p ∈ Q \ P or (2) verify that P = Q.

To do this, we will make use of the augmented Delaunay triangulation of P
(see Figure 5). This is the Delaunay triangulation of P ∪ {v1, v2, v3}, where v1,
v2, and v3 are three black points “at infinity” (see Figure 5). For any triangle t,
we use the notation C(t) to denote the circle whose boundary contains the three

vertices of t (note that if t contains a black point then C(t) is a halfplane). The
following lemma allows us to tell when we have found the entire set of points Q
that contribute to the decision boundary.

Lemma 3 Let ∅ 6= P ⊆ Q. The following statements are equivalent:

v1 v2

v3

Fig. 5. The augmented Delaunay triangulation of S.

1. For every triangle t in the augmented Delaunay triangulation of P , if t has a

blue (respectively, red) vertex then C(t) does not have a red (respectively, blue)

point of S in its interior.

2. P = Q.

Proof. First we show that if Statement 1 of the lemma is not true, then State-
ment 2 is also not true, i.e., P 6= Q. Suppose there is some triangle t in the

augmented Delaunay triangulation of P such that t has a blue vertex b and C(t)
contains a red point of S in its interior. Pivot in R along the ray originating at b
and passing through the center of C(t) (see Figure 6). This will give a circle C
with b and some red point r /∈ P on its boundary and with no red points in its
interior. Therefore, by Lemma 2, r contributes to the decision boundary and is

therefore in Q, so P 6= Q. A symmetric argument applies when t has a red vertex

r and C(t) contains a blue vertex in its interior.

t

C(t)

b

r

Fig. 6. If Statement 1 of Lemma 3 is not true then P 6= Q.

Next we show that if Statement 2 of the lemma is not true then Statement 1

is not true. Suppose that P 6= Q. Let r be a point in Q \ P and, without loss

of generality, assume r is a red point. Since r is in Q, there is a circle C with
r and some other blue point b on its boundary and with no points of S in its

interior. We will use r and b to show that the augmented Delaunay triangulation
of P contains a triangle t such that either (1) b is a vertex of t and C(t) contains

r in its interior, or (2) C(t) contains both r and b in its interior. In either case,

Statement 1 of the lemma is not true because of triangle t.
Refer to Figure 7 for what follows. Consider the largest circle C1 that is con-

centric with C and that contains no point of P in its interior (this circle is at least

as large as C). The circle C1 will have at least one point p1 of P on its boundary

(it could be that p1 = b, if b ∈ P). Next, perform a pivot in P along the ray
originating at p1 and containing the center of C1. This will give a circle C2 that

contains C1 and with two points p1 and p2 of P ∪ {v1, v2, v3} on its boundary

and with no points of P ∪{v1, v2, v3} in its interior. Therefore, (p1, p2) is an edge
in the augmented Delaunay triangulation of P .

The edge (p1, p2) partitions the interior of C2 into two pieces, one that con-

tains r and one that does not. It is possible to move the center of C2 along

the perpendicular bisector of (p1, p2) maintaining p1 and p2 on the boundary
of C2. There are two directions in which the center of C2 can be moved to ac-

complish this. In one direction, say
−→
d , the part of the interior that contains

r only increases, so move the center in this direction until a third point p3 ∈
P ∪ {v1, v2, v3} is on the boundary of C2. The resulting circle has the points p1,

p2, and p3 on its boundary and no points of P in its interior, so p1, p2 and p3 are
the vertices of a triangle t in the augmented Delaunay triangulation of P . The

circumcircle C(t) contains r in its interior and contains b either in its interior or

on its boundary. In either case, t contradicts Statement 1, as promised.

Note that the first paragraph in the proof of Lemma 3 gives a method of

testing whether P = Q, and when this is not the case, of finding a point in
Q \P . For each triangle t in the Delaunay triangulation of P , if t contains a blue

vertex b then perform a pivot in R along the ray originating at b and passing

through C(t). If the result of this pivot is C(t), then do nothing. Otherwise, the
pivot finds a circle C with no red points in its interior and that has one blue point

b and one red point r /∈ P on its boundary. By Lemma 2, the point r must be

in Q. If t contains a red vertex, repeat the above procedure swapping the roles
of red and blue. If both pivots (from the red point and the blue point) find the

circle C(t), then we have verified Statement 1 of Lemma 3 for the triangle t.
The above procedure performs at most two pivots for each triangle t in the

augmented Delaunay triangulation of P . Therefore, this procedure performs
O(|P |) = O(κ) pivots. Since we repeat this procedure at most κ times before de-

ciding that κ < k, we perform O(κ2) pivots, at a total cost of O(κ2 × n
κ2 log κ) =

O(n log κ). The only other work done by the algorithm is that of recomputing

the augmented Delaunay triangulation of P each time we add a new vertex to

P . Since each such computation takes O(|P | log |P |) time and |P | ≤ κ, the total
amount of work done in computing all these triangulations is O(κ2 log κ).

r b

p1

C

C1

r

p1 = b

C = C1

r b

p1
p2

C2

C1

r

p1 = b
p2

C1

C2

r b

p1
p2

t
p3

C2

C(t)

r

p1 = b
p2

t
p3

C2

C(t)

(1) (2)

Fig. 7. If P 6= Q then Statement 1 of Lemma 3 is not true. The left column (1) corresponds

to the case where b 6∈ P and the right column (2) corresponds to the case where b ∈ P .

In summary, we have an algorithm that given S and κ decides whether the

condensed set Q of points in S that contribute to the decision boundary has size

at most κ, and if so, computes Q. This algorithm runs in O((κ2 + n) log κ) time.
By trying increasingly large values of κ as described in Section 3.1 we obtain our

main theorem.

Theorem 2 The nearest-neighbour decision boundary of a set of n points in R
2 can

be computed in O(n log k) time, where k is the number of points that contribute to

the decision boundary.

Remark: Theorem 2 extends to the case where there are more than 2 color

classes and our goal is to find all Voronŏı edges bounding two cells of different

color. The only modification required is that, for each color class, R, we use two
pivoting data structures, one for R and one for S \ R. When performing pivots

from a point in R, we use the data structure for pivots in S \ R. Otherwise, the

details of the algorithm are identical.
Remark: In the pattern-recognition community pattern classification rules are

often implemented as neural networks. In the terminology of neural networks,
Theorem 2 states that it is possible, in O(n log k) time, to design a simple one-

layer neural network that implements the nearest-neighbour decision rule and

uses only k McCulloch-Pitts neurons (threshold logic units).

4 Conclusions

We have given O(n log k) time algorithms for computing nearest-neighbour de-
cisions boundaries in 1 and 2 dimensions, where k is the number of points that

contribute to the decision boundary. A standard application of Ben-Or’s lower-
bound technique [1] shows that even the 1-dimensional algorithm is optimal in

the algebraic decision tree model of computation.

We have not studied algorithms for dimensions d ≥ 3. In this case, it is not
even clear what the term “output-sensitive” means. Should k be the number of

points that contribute to the decision boundary, or should k be the complexity

of the decision boundary? In the first case, k ≤ n for any dimension d, while in
the second case, k could be as large as Ω(ndd/2e). To the best of our knowledge,

both are open problems.

References

1. M. Ben-Or. Lower bounds for algebraic computation trees (preliminary report). In

Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, pages

80–86, 1983.
2. B. K. Bhattacharya and S. Sen. On a simple, practical, optimal, output-sensitive

randomized planar convex hull algorithm. Journal of Algorithms, 25(1):177–193,

1997.

3. M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for

selection. Journal of Computing and Systems Science, 7:448–461, 1973.

4. T. M. Chan. Optimal output-sensitive convex hull algorithms in two and three di-

mensions. Discrete & Computational Geometry, 16:361–368, 1996.

5. T. M. Chan, J. Snoeyink, and C. K. Yap. Primal dividing and dual pruning: Output-

sensitive construction of four-dimensional polytopes and three-dimensional Voronoi

diagrams. Discrete & Computational Geometry, 18:433–454, 1997.

6. T. M. Cover and P. E. Hart. Nearest neighbour pattern classification. IEEE Transactions

on Information Theory, 13:21–27, 1967.

7. B. Dasarathy and L. J. White. A characterization of nearest-neighbour rule decision

surfaces and a new approach to generate them. Pattern Recognition, 10:41–46, 1978.

8. L. Devroye. On the inequality of Cover and Hart. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 3:75–78, 1981.

9. D. P. Dobkin and D. G. Kirkpatrick. Fast detection of poyhedral intersection. Theoret-

ical Computer Science, 27:241–253, 1983.

10. D. P. Dobkin and D. G. Kirkpatrick. A linear algorithm for determining the separation

of convex polyhedra. Journal of Algorithms, 6:381–392, 1985.

11. C. A. R. Hoare. ACM Algorithm 64: Quicksort. Communications of the ACM, 4(7):321,

1961.

12. D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing,

12(1):28–35, 1983.

13. D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM

Journal on Computing, 15(1):287–299, 1986.

14. F. P Preparata and M. I. Shamos. Computational Geometry. Springer-Verlag, 1985.

15. M. I. Shamos. Geometric complexity. In Proceedings of the 7th ACM Symposium on

the Theory of Computing (STOC 1975), pages 224–253, 1975.

16. C. Stone. Consistent nonparametric regression. Annals of Statistics, 8:1348–1360,

1977.

17. G. T. Toussaint. Proximity graphs for instance-based learning. Manuscript, 2003.

18. G. T. Toussaint, B. K. Bhattacharya, and R. S. Poulsen. The application of Voronoi

diagrams to non-parametric decision rules. In Proceedings of Computer Science and

Statistics: 16th Symposium of the Interface, 1984.

19. R. Wenger. Randomized quick hull. Algorithmica, 17:322–329, 1997.

