
- 9 -

5. References

1. Chazelle B (1980) Computational geometry and convexity. Ph.D. thesis, Carnegie-Mel-
lon University

2. Chazelle B, Dobkin D (1980) Detection is easier than computation.Proceedings of the
Twelfth Annual ACM Symposium on Theory of Computing. pp 146-153

3. Garey MR, Johnson DS, Preparata FP, Tarjan RE (1978) Triangulating a simple polygon.
Information Processing Lett 7:175-179

4. Guibas L, Ramshaw L, Stolfi J (1983) A kinetic framework for computational geometry.
Technical report. Xerox Park and Stanford University

5. Meisters GH (1975) Polygons have ears.American Mathematical Monthly. June/July
1975, 648-651

6. O’Rourke J (1982) A new linear algorithm for intersecting convex polygons.Comput.
Graph Image Processing 19:384-391

7. Shamos MI (1978) Computational Geometry, Ph.D. thesis, Yale University

8. Shamos MI (1977)Problems in Computational Geometry. Carnegie-Mellon University

9. Shamos MI, Hoey D (1976) Geometric intersection problemsProc. Seventeenth Annual
IEEE Symposium on Foundations of Computer Science. October 1976, pp 208-215

10. Toussaint GT (1981) Computational geometric problems in pattern recognition. In: Kit-
tler J (ed)Pattern Recognition Theory and Applications. p 73-91

11. Toussaint GT (1983) Solving geometric problems with the rotating calipers.Proc. ME-
LECON, Athens. Greece

12. Toussaint GT (1984) An optimal algorithm for computing the minimum vertex distance
between two crossing convex polygons.Computing 32:357-364

13. Toussaint GT, Avis D (1982) On a convex hull algorithm for polygons and its application
to triangulation problems.Pattern Recognition. 15:23-29

14. Kundu, S., (1987) A new O(n log n) algorithm for computing the intersection of convex
polygons.Pattern Recognition. 20:419-424

- 8 -

backtracking and at the same time can answer the question of whetherCH(P ∪ Q) = P or Q.
If there arek bridges onCH(P ∪ Q) then STEPDOWN is calledk times in step 2. Each call
requires time linear in the number of vertices processed and the total number of these vertices
is the sum total of the vertices on all theouter chains of P andQ. Thus step 2 runs in O(m+n)
time. Finally, if we leave pointers from the intersection points to theinner andouter chains
in both directions, as we find them in step 2, then the merge step of the inner chains in step 3
can be done in linear time by a mere traversal of the two lists forP andQ. Q.E.D

4. Concluding remarks

As a final remark we mention that the “ear-cutting” triangulation algorithm forsail polygons
presented in section two can be applied to the problem of triangulating a set ofn points on the plane
in O(n log n) time via divide-and-conquer. Here, if the points have been presorted, at each step we
must merge two triangulationsT1 andT2 which are linearly separable triangulated convex poly-
gons (Fig. 5.) The merge step consists of triangulating thehourglass polygon “in between”T1 and
T2. This region lies outsideT1 andT2 but insideCH(T1 ∪ T2). An hourglass polygon is a polygon
consisting of two edges called the top (bridgepi, pj) and the bottom (bridgepk, pl) such thatpi and
pl (as well aspk, pj) are joined byconcave chains and (pi, pj, pk, pl) forms aconvex quadrilateral.
Now consider acritical line of support betweenT1 andT2 atpu andpv. This line decomposes the
hourglass polygon into twosail polygons and . Finding the bridges and the edgepupv can
be done in linear time with the rotating calipers [11]. Triangulating thesail polygons will thus solve
the merge ofT1 andT2 in linear time which is sufficient to obtain the overall O(n log n) perfor-
mance. Note that the triangulation algorithms of [13] and [3]cannot be used here since anhour-
glass polygon need be neitheredge-visible nor monotone. Finally, we remark that this algorithm
can be applied to the problem of computing distances between crossing convex polygons [12].

Ps1
Ps2

pi

pu

pv

pj

pk

pl

T1
T2

Fig. 5

- 7 -

ps <-- pi; qt <-- qj

END STEPDOWN

Lemma 3.1: Procedure STEPDOWN correctly computes the intersection point corresponding to
a bridge in O(n) time.

Proof: The proof follows essentially from the realization that STEPDOWN is an implementation
of the “ear-cutting” triangulation algorithm forsail polygons given in the previous section.
Note that (p1, q1, q2,..., qt, I, ps, ps-1,..., p2) would be a sail polygon ifI were a vertex con-
nected tops andqt. Thus the “ear-cutting” algorithm must eventually arrive atpsqt. Now in a
truesail polygon the algorithm automatically stops here becauseps+1 = qt+1. However, in this
situation this is not the case sinceps+1 andqt+1belong to different polygonal chains. The tests
for left and right turns in the inner WHILE loops of STEPDOWN not only prevent the algo-
rithm from continuing pastps andqt, but also determine an ordering for “ear-cutting”, by in-
voking Lemma 2.4. Q.E.D.

We now describe the algorithm for computing the intersection of two intersecting convex
polygonsP andQ. The portions of the boundaries ofP andQ outsideP ∩ Q will be referred to as
outer chains, those portions insideP ∪ Q asinner chains.

ALGORITHM INTERCONPOL

Begin

 Step 1. Find the convex hull of the union ofP andQ, CH(P ∪ Q).

 If CH(P ∪ Q) = P (or Q)

then Exit with Q (or P) as the intersection;

 Else continue.

Step 2. For eachbridge of CH(P ∪ Q) call procedure STEPDOWN to compute the

 intersection points ofP ∩ Q.

Step 3. Merge theinner chains of P andQ determined by the intersection points found in
step 2.

End

Theorem 3.1: Algorithm INTERCONPOL correctly computes the intersection polygon of two in-
tersecting convex polygonsP andQ in O(m+n) time.

Proof: The correctness of the algorithm follows from Lemmas 2.1 and 3.1. Therefore we turn to
its complexity. Finding the convex hull of two intersecting convex polygons in step 1 can be
done in O(m+n) time with several algorithms [7], [10], [11]. The simplest of all algorithms
is the “rotating caliper” method [11] which, unlike those of [7] and [10], does not involve

- 6 -

andqj are the “current” vertices under consideration and are a tentative solution. When the algo-
rithm stopspi = ps andqj = qt. The boolean variable “finished” indicates whenps andqt are reached
by taking on the value “true” after an execution of the “repeat” loop.

PROCEDURE STEPDOWN

{initialization} i <-- 1; j <-- 1

repeat

 finished <-- true

while (pi pi+1 qj+1) left do

begin

j <-- j + 1

 finished <-- false

end

while (qj qj+1 pi+1) right do

begin

 i <-- i + 1

 finished <-- false

end

until finished

p1

p2
p3

ps

q1

q2
q3

qt

ps+1

qt+1

Fig. 4

P

Q

- 5 -

Lemma 2.2: Every polygon ofn sides (n>3) has at least two non-overlapping ears.

This theorem leads Meisters to propose an O(n3) algorithm for triangulating simple polygons
by finding ears and “cutting them off”.Sail polygons on the other hand have enough structure that
we can “cut off all the ears” in O(n) time. Note that, by definition, onlyconvex vertices can beears.
Also, a sail polygon has the property that onlypi, pi+1 andpj areconvex, and thus candidates for
ears. We thus have the following results.

Lemma 2.3: Thetip of asail polygon is anear.

Proof: Extend and to intersectL(pi, pi+1) atx andy, respectively, (Fig. 3.) Point
x must lie on pipi+1 or elsepj could not be joined topi with aconcave chain. The same argu-
ment holds fory. By constructionpj pj-1 x y pj+1 pj forms a triangle and by convexity it lies
in Ps. Therefore the diagonal lies inPs. Q.E.D.

Lemma 2.4: Either themast top or themast bottom of asail polygon is anear.

Proof: Only pi, pi+1, andpj in Ps can be ears. By Lemma 2.3pj must be an ear. By Lemma 2.2
Ps must have at least two ears. Therefore eitherpi or pi+1 must be an ear. Q.E.D.

Lemma 2.4 allows us to triangulatePs in O(n) time by “wrapping the sail around the mast”
until only the sail tip remains. In other words, starting at the mast we cut off the top ear or the bot-
tom ear and proceed to the polygon remaining. The correctness of the algorithm follows from the
induction hypothesis that, at each step, the polygon remaining is asail polygon. The proof of this
induction hypothesis is left as an easy exercise for the reader. The linearity follows from the fact
that at each step, which takes constant timePs contains one less vertex. Note that other linear time
algorithms could be used for triangulatingPs. For examplePs is edge-visible from the mast and
thus the algorithm of [13] can be used. Alternately,Ps is monotonic in the direction perpendicular
to themast and therefore the algorithm of Garey et al. [3] applies. The advantages of the algorithm
presented here are that, first, unlike those of [13] and [3] it does not incorporate backtracking and
is thus simpler, and second, the last diagonal to be added is . This latter property is crucial
for solving the polygon intersection problem, The “ear-cutting” algorithm is in essence a trimmed
version of the algorithm of Garey et al. [3] that exploits the added structure thatsail polygons have
overmonotone polygons.

3. The algorithm

Before describing the complete algorithm we present PROCEDURE STEPDOWN which re-
ceives as input a bridgeBk(pi, pj) of CH(P ∪ Q) and exits with the corresponding pair of edges that
determine the intersection pointIk. Without loss of generality assumep1 andq1 form the bridge,Q
is given counter-clockwise order, and ∩ determines the intersection pointI.
(Fig.4.) A convenient data structure forP andQ here is a doubly-linked circular list so that we can
scan in either direction and set up pointers between the vertices ofP and those of Q. Procedure
STEPDOWN finds the two verticesps andqt that can then be used to computeI. The variablespi

p j p j 1– p j p j 1+

p j 1– p j 1+

p j 1– p j 1+

ps ps 1+ qtqt 1+

- 4 -

pk I ql+1 < 180o it follows that there must exist an edgepiqj ∈ CH(P ∪ Q) that intersectsR
and this is the bridge corresponding toI. Q.E.D.

We now define a restricted class of simple polygons and establish some results concerning
their triangulation. While we are not explicitly interested in triangulating these polygons these re-
sults will be useful in understanding, and proving the correctness of the algorithm. A polygonal
chainC(pi, pi+1,...,pj) is a portion of consecutive vertices and edges of a simple polygon. If all turns
areright (convex angles) we have aconvex chain. If all turns areleft (reflex angles) we have a con-
cave chain.

Definition: A sail polygonPs is one that contains an edge called themast of P and a
vertexpj called thesail tip of P such thatpj is connected topi andpi+1 by concave chains (Fig. 3.)
Note thatPs must be completely inRH(pi, pi+1).

Definition: A line segment, lying inP, that connects two non-adjacent vertices ofP is adiago-
nal of P

Definition: Three consecutive verticespi, pi+1, pi+2 are said to form anear of P at pi+1 if the
diagonal joiningpi andpi+2 lies inP.

Definition: Two ears arenon-overlapping if their interior regions are disjoint.

Meisters [5] proves the following “two-ears” theorem

pi pi 1+

mast top

mast bottom

mast

x

y

pi

PS

sail tip
pj+1

pj-1

pi+1

Fig. 3

ps

- 3 -

Q. The algorithm for computingP ∩ Q can now be described informally as the following three-
step procedure: first construct the convex hull ofP ∪ Q, then for each bridgeBi find its correspond-
ing intersection Ii, and finally “merge” the corresponding polygonal chains that connect adjacent
intersection points.

We now prove some lemmas that we will need to prove the correctness of the algorithm de-
scribed in section three. LetL(u, v) denote the directed line throughu andv in the directionu, v and
let RH(u, v) denote the closed half-plane to the right ofL(u, v).

The following lemma has been proved by Guibas et al. [4] using a powerful new framework
involving convolutions (a special case of fiber products) of polygons. We include an alternate el-
ementary proof here for completeness.

Lemma 2.1: If P andQ intersect there exists a unique mutual one-to-one correspondence be-
tween the bridges ofCH(P ∪ Q) and the intersection points ofP ∩ Q.

Proof: Let B(pi, qj) be a bridge and refer to Fig. 2.L(pi, qj) must be a line of support for bothP
andQ. FurthermoreP andQ must both lie inRH(pi, qj). TraceP in a clockwise manner start-
ing atpi until an edge ofP intersects an edge ofQ at I. Similarly traceQ in a counter-clock-
wise manner starting atqj until an edge ofQ intersects an edge ofP. From convexity it fol-
lows that this intersection point is alsoI and thusI corresponds toB(pi, qj). On the other hand
assume thatI is some intersection point between edge ∈ P and ∈ Q. SinceP
∈ RH(pk, pk+1) andQ ∈ RH(ql, ql+1) it follows that no edge ofP or Q other than and

 may intersect the regionR = RH(pk+1, pk) ∩ RH(ql+1, ql). Furthermore, since angle

pk pk 1+ qlql 1+
pk pk 1+

qlql 1+

pi

qi

pk

ql

pk+1

ql+1

P

Q

R

Fig. 2

L(pk, pk+1) L(ql, ql+1)

- 2 -

code is needed if the convex hull and triangulation codes are already available. Furthermore, the
algorithm presented here is conceptually transparently clear and affords an easy proof of correct-
ness.

2. Preliminary results

In this section we present an informal description of the algorithm and some preliminary re-
sults. A detailed description of the algorithm and a proof of correctness is included in section three.
We assume that the interiors of the polygonsP andQ intersect. If this is not true there is no inter-
section polygon to construct and the intersection then is either a line segment, a point, or the empty
set. In any case, determining whether the interiors ofP andQ intersect can be easily performed in
O(log(m+n)) time [1], [2]. In order to simplify the description of the algorithm and to prevent the
essential aspects from drowning in a sea of detail we further assume that no three vertices inP ∪
Q are collinear and all vertices inP ∪ Q are distinct. This implies that ifP andQ intersect then so
do their interiors. It also implies that if the boundaries ofP andQ intersect the intersection points
do not coincide with vertices ofP or Q. Special case tests can be included for the “singularities”
that arise when this assumption is not made and these are similar for all the algorithms outlined
above [6]-[9]. A clear exposition on handling these cases is given by O’Rourke et al. [6].

Consider then two polygonsP andQ whose boundaries intersect and construct the convex
hull of their union (Fig. 1). Let the boundaries ofP andQ intersect atk intersection points I1, I2,...,
Ik indexed in clockwise order. The boundaries ofP, Q, and the convex hull ofP andQ, CH(P ∪
Q), partition the plane into 2k + 1 bounded regions: the convex intersection region (I1,..., I2,...,
Ik,...),k regions whereP andQ lie outsideP ∩ Q (Pst associated withIs and It, andQuv associated
with Iu and Iv) andk “pockets”K1, K2,...,Kk where a pocketKv is associated with Iv and is in the
region insideCH(P ∪ Q) but outsideP ∪ Q. With each pocketKv we associate a bridge which is
an edge ofCH(P ∪ Q), denoted byBv(,) and which joins vertex of P with vertex ofpiv

q jv
piv

q jv

Fig. 1

qj
1

qj
6

qj
2 qj

3

pi
1

pi
2

pi
3

pi
4

B2(pi ,
2

qj)
2

P12

Q61
Q45

Q23

I1

I2
I3

I4

I5
I6

K1

K2

K3

K4

K5

K6

P

Q

P34

P56

- 1 -

A Simple Linear Algorithm for Intersecting Convex Polygons

Godfried T. Toussaint
School of Computer Science

McGill University
Montreal, Quebec, Canada H3A 2A7

ABSTRACT

Let P andQ be two convex polygons withm andn vertices, respectively, which are
specified by their cartesian coordinates in order. A simple O(m+n) algorithm is pre-
sented for computing the intersection ofP andQ. Unlike previous algorithms, the
new algorithm consists of a two-step combination of two simple algorithms for find-
ing convex hulls and triangulations of polygons.

Key words: Algorithms - Complexity - Computational geometry - Convex polygons
- Intersection

1. Introduction

Let P = {p1, p2,..., pm} and Q = {q1, q2,..., qn} be two convex polygons whose vertices are
specified by their cartesian coordinates in clockwise order. It is assumed that the polygons are in
standard form, i.e., the vertices of each polygon are distinct and no three consecutive vertices are
collinear [7]. A common problem in computer graphics, image processing and many sub-problems
in computational geometry is that of computing the intersection ofP andQ which is itself another
convex polygon of at mostm+n vertices. The brute force method converts each edge of each poly-
gon to a half-plane and then inserts each half-plane into a tentative intersection. This leads to an
algorithm with O(mn) time complexity. If a divide and conquer strategy is used instead, then an
O((n+m) log (n+m)) complexity may be achieved. An alternate O((n+m) log (n+m)) time algo-
rithm was proposed by Kundu [14] where he first sorts all the half-planes by the angles of their
defining bounding lines and then uses a linear time procedure for computing their intersection.
These procedures do not exploit the convexity properties of the polygons. Several linear time al-
gorithms that do make use of convexity have recently been proposed for this problem [6]-[9]. The
algorithms in [7]-[9] are relatively cumbersome to program due to the large number of cases that
arise when intersecting the trapezoids that result with the “slab” method employed in [7]. The sim-
plest and most elegant of the above algorithms is the one due to O’Rourke et al. [6]. Here two
“bugs”, one of the boundary ofP and the other of the boundary ofQ, “chase” each other in an al-
ternating fashion as each tries to cross the “forward line of sight” of the other.

In this paper we present a new simple algorithm for constructing the intersection ofP andQ
in O(m+n) time in the worst case. Unlike the previous algorithm of [6]-[9] the new algorithm is a
combination of existing simple procedures for computing convex hulls and triangulations of poly-
gons. Because of this it may be a little slower in practice than the algorithm O’Rourke et al. [6],
depending on which convex hull algorithm is employed. On the other hand little new specialized

