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backtracking and at the same time can answer the question of wieilrelrl Q) =P or Q.

If there arek bridges onCH(P O Q) then STEPDOWN is callekitimes in step 2. Each call
requires time linear in the number of vertices processed and the total number of these vertices
is the sum total of the vertices on all twer chains of P andQ. Thus step 2 runs in @n)

time. Finally, if we leave pointers from the intersection points tarthe andouter chains

in both directions, as we find them in step 2, then the merge step of the inner chains in step 3
can be done in linear time by a mere traversal of the two lisBdodQ. Q.E.D

4. Concluding remarks

As a final remark we mention that the “ear-cutting” triangulation algorithreafbpolygons
presented in section two can be applied to the problem of triangulating & geiimts on the plane
in O(n log n) time via divide-and-conquer. Here, if the points have been presorted, at each step we
must merge two triangulatiol§ andT, which are linearly separable triangulated convex poly-
gons (Fig. 5.) The merge step consists of triangulatingdtglass polygon “in betweenT; and
T,. This region lies outsid€; andT, but insideCH(T; U T,). An hourglass polygon is a polygon
consisting of two edges called the top (briggey;) and the bottom (bridga, p) such thap; and
p (as well ap,, pj) are joined byconcave chains andy, p;, Py, P) forms aconvex quadrilateral.
Now consider a&ritical line of support betweerilr, andT, atp, andp,. This line decomposes the
hourglass polygon into twosail polygonsP, andP, . Finding the bridges and the edg, can
be done in linear time with the rotating callpers [131] Triangulatingdith@olygons will thus solve
the merge off; andT, in linear time which is sufficient to obtain the overalh@dg n) perfor-
mance. Note that the triangulation algorithms of [13] andgBhot be used here since haour-
glass polygon need be neithedge-visible nor monotone. Finally, we remark that this algorithm
can be applied to the problem of computing distances between crossing convex polygons [12].



Ps <--Pii Gt <— G
END STEPDOWN

Lemma3.1: Procedure STEPDOWN correctly computes the intersection point corresponding to

a bridge in Of) time.

Proof: The proof follows essentially from the realization that STEPDOWN is an implementation
of the “ear-cutting” triangulation algorithm faail polygons given in the previous section.
Note that p1, d1, d,.... G |, Ps Ps1.---, P2) Would be a sail polygon ifwere a vertex con-
nected tgg andg;. Thus the “ear-cutting” algorithm must eventually arrivesgt Now in a
truesail polygon the algorithm automatically stops here becpuse g;..1. However, in this
situation this is not the case sinkg; andg;,, belong to different polygonal chains. The tests
for left and right turns in the inner WHILE loops of STEPDOWN not only prevent the algo-
rithm from continuing pagts andg;, but also determine an ordering for “ear-cutting”, by in-

voking Lemma 2.4. Q.E.D.

We now describe the algorithm for computing the intersection of two intersecting convex
polygonsP andQ. The portions of the boundaries®andQ outsideP n Q will be referred to as
outer chains, those portions inside [0 Q asinner chains.

ALGORITHM INTERCONPOL
Begin
Sep 1. Find the convex hull of the union BfandQ, CHP [J Q).
If CHPO Q) =P (orQ)
then Exit with Q (or P) as the intersection;
Else continue.

Sep 2. For eachbridge of CH(P L] Q) call procedure STEPDOWN to compute the

intersection points Bfn Q.

Sep 3. Merge thanner chains of P andQ determined by the intersection points found in
step 2.

End

Theorem 3.1: Algorithm INTERCONPOL correctly computes the intersection polygon of two in-
tersecting convex polygorisandQ in O(m+n) time.

Proof: The correctness of the algorithm follows from Lemmas 2.1 and 3.1. Therefore we turn to
its complexity. Finding the convex hull of two intersecting convex polygons in step 1 can be
done in Of+n) time with several algorithms [7], [10], [11]. The simplest of all algorithms
is the “rotating caliper” method [11] which, unlike those of [7] and [10], does not involve
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andgq are the “current” vertices under consideration and are a tentative solution. When the algo-
rithm stopgp; = psandq; = ¢;. The boolean variable “finished” indicates wiggrndg; are reached
by taking on the value “true” after an execution of the “repeat” loop.

PROCEDURE STEPDOWN
{initialization} i <-- 1;j <-- 1
repeat
finished <-- true
while (pj pi+1 Gj+1) left do
begin
j<-j+1
finished <-- false
end
while (g; gj+1 pi+1) rightdo
begin
i<-i+1
finished <-- false
end

until finished



Lemma2.2: Every polygon oh sides (>3) has at least two non-overlapping ears.

This theorem leads Meisters to propose an?ﬁ(lgorithm for triangulating simple polygons
by finding ears and “cutting them off%ail polygons on the other hand have enough structure that
we can “cut off all the ears” in @) time. Note that, by definition, onlyonvex vertices can bears.
Also, a sail polygon has the property that oplyp;+1 andp; areconvex, and thus candidates for
ears. We thus have the following results.

Lemma2.3: Thetip of asail polygon is arear.

Proof: Extendpj Pj_1 andpj P+ 10 intersect.(p;, pj+1) atx andy, respectively, (Fig. 3.) Point
x must lie orp;p;.1 or elsep; could not be joined tp; with aconcave chain. The same argu-
ment holds fol. By constructiorp; p;.; Xy pj+1 pj forms a triangle and by convexity it lies

in Pg. Therefore the diagona] _1Pj+1 liesinPs. Q.E.D.

Lemma2.4: Either themast top or themast bottom of asail polygon is arear.

Proof:  Only p;, pi+1, andp; in Pg can be ears. By Lemma 23must be an ear. By Lemma 2.2
Ps must have at least two ears. Therefore epher p;,; must be an ear. Q.E.D.

Lemma 2.4 allows us to triangula®gin O(n) time by “wrapping the sail around the mast”
until only the sail tip remains. In other words, starting at the mast we cut off the top ear or the bot-
tom ear and proceed to the polygon remaining. The correctness of the algorithm follows from the
induction hypothesis that, at each step, the polygon remainingiils@olygon. The proof of this
induction hypothesis is left as an easy exercise for the reader. The linearity follows from the fact
that at each step, which takes constant Bgxeontains one less vertex. Note that other linear time
algorithms could be used for triangulatiRg For exampleP is edge-visible from the mast and
thus the algorithm of [13] can be used. AlternatBlyis monotonic in the direction perpendicular
to themast and therefore the algorithm of Garey et al. [3] applies. The advantages of the algorithm
presented here are that, first, unlike those of [13] and [3] it does not incorporate backtracking and
is thus simpler, and second, the last diagonal to be achje_diisj . 1- This latter property is crucial
for solving the polygon intersection problem, The “ear-cutting” algorithm is in essence a trimmed
version of the algorithm of Garey et al. [3] that exploits the added structusaithzdlygons have
overmonotone polygons.

3. Thealgorithm

Before describing the complete algorithm we present PROCEDURE STEPDOWN which re-
ceives as input a bridgg(p;, p;) of CH(P LI Q) and exits with the corresponding pair of edges that
determine the intersection poipt Without loss of generality assumpgandg, form the bridgeQ
is given counter-clockwise order, apdp,,; N 0,0, determines the intersection point
(Fig.4.) A convenient data structure andQ here is a doubly-linked circular list so that we can
scan in either direction and set up pointers between the verti€earaf those of). Procedure
STEPDOWN finds the two verticgs andg; that can then be used to comput&he variableg;




Pk | g1 < 18C it follows that there must exist an edgg; 0 CH(P O Q) that intersect®
and this is the bridge corresponding.to Q.E.D.

We now define a restricted class of simple polygons and establish some results concerning
their triangulation. While we are not explicitly interested in triangulating these polygons these re-
sults will be useful in understanding, and proving the correctness of the algorithm. A polygonal
chainC(p;, p+1,---,)) is @ portion of consecutive vertices and edges of a simple polygon. If all turns
areright (convex angles) we havesanvex chain. If all turns ardeft (reflex angles) we have are
cave chain.

Definition: A sail polygonPg is one that contains an edggp, , ; called themast of P and a
vertexp; called thesail tip of P such thap; is connected tp; andp;,1 by concave chains (Fig. 3.)
Note thatPg must be completely iRH(p;, pj+1)-

Definition: A line segment, lying i, that connects two non-adjacent verticeB o adiago-
nal of P

Definition:  Three consecutive vertic@s p;+1, Pi+» are said to form aear of P atp;, if the
diagonal joiningp; andp, lies inP.

Definition: ~ Two ears ar@on-overlapping if their interior regions are disjoint.

Meisters [5] proves the following “two-ears” theorem

Pi+1 ¢ mast top

sail tip
Ps

/ mast bottom

Fig.3




Q. The algorithm for computing n Q can now be described informally as the following three-
step procedure: first construct the convex huR &f Q, then for each bridgg; find its correspond-

ing intersectiorl;, and finally “merge” the corresponding polygonal chains that connect adjacent
intersection points.

We now prove some lemmas that we will need to prove the correctness of the algorithm de-
scribed in section three. Lietu, v) denote the directed line througlndv in the directioru, vand
let RH(u, v) denote the closed half-plane to the right@f, v).

The following lemma has been proved by Guibas et al. [4] using a powerful new framework
involving convolutions (a special case of fiber products) of polygons. We include an alternate el-
ementary proof here for completeness.

Lemma2.1: If P andQ intersect there exists a unique mutual one-to-one correspondence be-
tween the bridges @H(P [0 Q) and the intersection points Bfn Q.

Proof: LetB(p;, ¢f) be a bridge and refer to Fig.lqp;, gj) must be a line of support for bdth
andQ. Furthermoré® andQ must both lie irRH(p;, g;). TraceP in a clockwise manner start-
ing atp; until an edge oP intersects an edge Qfatl. Similarly traceQ in a counter-clock-
wise manner starting af until an edge o intersects an edge Bf From convexity it fol-
lows that this intersection point is alsand thud corresponds t8(p;, g;). On the other hand
assume thdtis some intersection point between egge, . ; LI P andq,q, , ; 0 Q. SinceP
L RH(py, Pr+1) @andQ O RH(qy, i+ it follows that no edge d® or Q other tharp, p, , ;and
g, 1 May intersect the regidR = RH(py+1, P) N RH(q+1, g)). Furthermore, since angle

\\lr(pka P+ 1) L(q, QI+1)I/

qi
R

Fig. 2




code is needed if the convex hull and triangulation codes are already available. Furthermore, the
algorithm presented here is conceptually transparently clear and affords an easy proof of correct-
ness.

2. Preliminary results

In this section we present an informal description of the algorithm and some preliminary re-
sults. A detailed description of the algorithm and a proof of correctness is included in section three.
We assume that the interiors of the polygBrandQ intersect. If this is not true there is no inter-
section polygon to construct and the intersection then is either a line segment, a point, or the empty
set. In any case, determining whether the interioBaidQ intersect can be easily performed in
O(log(m+n)) time [1], [2]. In order to simplify the description of the algorithm and to prevent the
essential aspects from drowning in a sea of detail we further assume that no three véttices in
Q are collinear and all vertices 1 Q are distinct. This implies thatkf andQ intersect then so
do their interiors. It also implies that if the boundarie® ahdQ intersect the intersection points
do not coincide with vertices &f or Q. Special case tests can be included for the “singularities”
that arise when this assumption is not made and these are similar for all the algorithms outlined
above [6]-[9]. A clear exposition on handling these cases is given by O’Rourke et al. [6].

Consider then two polygor® andQ whose boundaries intersect and construct the convex

hull of their union (Fig. 1). Let the boundariesRoindQ intersect ak intersection points, I,...,

|, indexed in clockwise order. The boundarie®o®, and the convex hull & andQ, CHP U

Q), partition the plane intok2+ 1 bounded regions: the convex intersection redign.(l,...,
l.---), k regions wher® andQ lie outsideP n Q (P associated withg andl,, andQ,,, associated
with I, andl,) andk “pockets’K4, Ko, ..., Ky where a pockek,, is associated with, and is in the
region insideCH(P O Q) but outsideP [ Q. With each pockek,, we associate a bridge which is
an edge ofCH(P O Q), denoted b)B\,(in,qjv) and which joins vertep; of P with vertexq; of

Fig. 1




A SimpleLinear Algorithm for I ntersecting Convex Polygons

Godfried T. Toussaint
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McGill University
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ABSTRACT

Let P andQ be two convex polygons witm andn vertices, respectively, which are
specified by their cartesian coordinates in order. A simpie+@) algorithm is pre-
sented for computing the intersectionPbaind Q. Unlike previous algorithms, the
new algorithm consists of a two-step combination of two simple algorithms for find-
ing convex hulls and triangulations of polygons.

Key words: Algorithms - Complexity - Computational geometry - Convex polygons
- Intersection

1. Introduction

Let P = {py, P2,-.., Py @nd Q = {Qy, 0p,-.., G} be two convex polygons whose vertices are
specified by their cartesian coordinates in clockwise order. It is assumed that the polygons are in
standard form, i.e., the vertices of each polygon are distinct and no three consecutive vertices are
collinear [7]. A common problem in computer graphics, image processing and many sub-problems
in computational geometry is that of computing the intersectiéhanfdQ which is itself another
convex polygon of at most+n vertices. The brute force method converts each edge of each poly-
gon to a half-plane and then inserts each half-plane into a tentative intersection. This leads to an
algorithm with Ofnn) time complexity. If a divide and conquer strategy is used instead, then an
O((ntm) log (n+m)) complexity may be achieved. An alternater®t) log (n+m)) time algo-
rithm was proposed by Kundu [14] where he first sorts all the half-planes by the angles of their
defining bounding lines and then uses a linear time procedure for computing their intersection.
These procedures do not exploit the convexity properties of the polygons. Several linear time al-
gorithms that do make use of convexity have recently been proposed for this problem [6]-[9]. The
algorithms in [7]-[9] are relatively cumbersome to program due to the large number of cases that
arise when intersecting the trapezoids that result with the “slab” method employed in [7]. The sim-
plest and most elegant of the above algorithms is the one due to O’'Rourke et al. [6]. Here two
“bugs”, one of the boundary &fand the other of the boundary®@f “chase” each other in an al-
ternating fashion as each tries to cross the “forward line of sight” of the other.

In this paper we present a new simple algorithm for constructing the intersedd@md®
in O(M+n) time in the worst case. Unlike the previous algorithm of [6]-[9] the new algorithm is a
combination of existing simple procedures for computing convex hulls and triangulations of poly-
gons. Because of this it may be a little slower in practice than the algorithm O’Rourke et al. [6],
depending on which convex hull algorithm is employed. On the other hand little new specialized



