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{(X1,θ1), (X2,θ2),..., (Xn,θn)} in turn and classify it with the remaining set [Wa73]. Geometri-

cally this problem reduces to computing for a given set of points in d-space the nearest neighbour
of each (the all-nearest-neighbours problem).

6. Proximity Graphs

Almost every aspect of computer vision, as we have seen, can benefit enormously from the
application of proximity graphs and therefore we devote an entire section of the paper to such
graphs. Many problems that would presumably be useful for computer vision remain open and we
state some of them here to bring them to the attention of interested readers.

6.1 Recognizing Proximity Graphs

One area as yet almost totally unexplored concerns the question of the recognition of prox-
imity graphs. The only known result concerns Delaunay triangulations. Given a triangulation T of
a set of n points, Ash & Bolker [AB85] have shown that whether T is a Delaunay triangulation can
be determined in O(n) time under mild assumptions.

6.2 Graph Theoretic Properties of Proximity Graphs

Another area which has received little attention concerns the determination of graph theo-
retical properties of proximity graphs. The only proximity graphs which have been carefully ex-
amined are the Gabriel graph [MS80] and the RNG [Ur83].

6.3 Probabilistic Properties of Proximity Graphs

Yet another area which has received little attention concerns the determination of probabi-
listic and statistical properties of proximity graphs. The only proximity graphs which have been
carefully examined are the Delaunay triangulation, the Gabriel graph, and the RNG. Miles [Mi70]
has done considerable work on the probability distribution of random variables describing charac-
teristics of the Delaunay triangulation. See also Getis & Boots [GB78]. Devroye [De88] obtains a
variety of results concerning the expected number of edges in proximity graphs such as the Gabriel
graph, the RNG and several types of nearest neighbour graphs. No results of this type are known
for the other proximity graphs discussed in this paper.
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can be computed in linear time.

5. Decision Rules

Once a feature vector X=[x1,x2,...,xd] has been extracted from an object in the image it is

often desired to classify the object into one of a predetermined set of pattern classes or categories.
There are scores of methods for doing this [DH72].

5.1 Parametric Decision Rules

In parametric classification we assume that X is a random variable with some specified
probability density function or distribution described by some parameters that are usually estimat-
ed from data. In this approach one is often called upon to compute distances between sets under
varying types of metrics [To70]. Such is in fact an implicit computation of the Voronoi diagram
where the seeds are the estimates of location for the distributions. Alternately, one may seek to de-
scribe geometrically the decision boundaries themselves, i.e., the manner in which the discriminant
functions partition the feature space into regions associated with the pattern classes [To72].

5.2 Non-parametric Decision Rules

In the non-parametric classification problem we have available a set of n feature vectors
taken from a collected data set of n objects denoted by {X,Θ}={(X1,θ1), (X2,θ2),..., (Xn,θn)},

where Xi and θi denote, respectively, the feature vector on the ith object and the class label of the

object. One of the most powerful such techniques is the so-called nearest-neighbour rule (NN-rule)
[CH67], [De81]. Let Y be a new object (feature vector) to be classified and let
Xk*∈{X1,X2,...,Xn} be the feature vector closest to Y. The nearest neighbour decision rule clas-

sifies the unknown object Y as belonging to class θk*.

In the past some practitioners have avoided using the NN-rule on the grounds of the mis-
taken assumptions that (1) all the data {X,Θ} must be stored in order to implement such a rule and
(2) to determine Xk*, distances must be computed between Y and all members of {X1,X2,...,Xn}.

Both of these problems have been eradicated with techniques from computational geometry. Var-
ious methods exist for computing a nearest neighbour without computing distances to all the can-
didates [FBF77]. In fact, the point location techniques [LP77] do not compute any distances at all.
Furthermore, not all the “training” data {X,Θ} is required to be stored. Methods have been devel-
oped [TBP84] to edit “redundant” members of {X,Θ} in order to obtain a relatively small subset
of {X,Θ} that nevertheless implements exactly the same decision rule as using all of {X,Θ}. Such
methods depend heavily on the use of Voronoi diagrams and proximity graphs such as the Gabriel
graph [TBP84].

5.3 Estimation of Misclassification

A most important and too often neglected problem in computer vision concerns the proper
experimental methodology for estimating the performance of a decision rule. For a survey of early
work on this topic see [To74]. Many geometric problems occur here as well. For example, a good
method of estimating the performance of the NN-rule is to delete each member of {X,Θ} =
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it by 0.5. The same trick reduces Avis & Horton’s bound by 0.5. David Avis has found examples
that require 9n edges and conjectures that the best upper bound is in fact 9n.

4.3 Polygon Decomposition

4.3.1 Simple polygons

In 1975 Vasek Chvatal [Ch75] proved that n/3 guards were always sufficient, and some-
times necessary, to guard (jointly see) the complete interior of a simple polygon (art gallery) con-
sisting of n walls or vertices. This result has come to be known as Chvatal’s Art Gallery Theorem
and has since evolved to fill out an entire book on the subject {O’R 87]. Avis and Toussaint in 1981
obtained an O(n log n) time algorithm for actually placing the guards and noted that this algorithm
also decomposes the polygon into at most n/3 star-shaped components [AT81] improving on the
complexity of a previous algorithm for this problem [Ma72].

The problems of decomposing simple polygons into various types of more structured poly-
gons have a number of practical applications and have received considerable attention recently
from the theoretical perspective. See [To88a] for several papers discussing recent issues. In pattern
recognition it is desired to obtain decompositions into perceptually meaningful parts. The so-called
component-directed methods or region-based covers and partitions decompose the polygon into
well established classes of simpler polygons such as triangles, squares, rectangles as well as con-
vex, monotone, or star-shaped polygons [To88a]. These decompositions however are rarely satis-
factory from the morphological point of view although they do have their place in other contexts.
An alternate approach which may be superior from this point of view is the use of procedure-di-
rected methods based on proximity graphs. In [To80b] it was proposed to use the relative-neigh-

bour decomposition (RND) of a simple polygon P of n vertices and an O(n3) time algorithm for its
computation was given. ElGindy and Toussaint [ET88] have since reduced this complexity to

O(n2). Two vertices pi and pj of a simple polygon are relative neighbours if their lune contains no

other vertices of P that are visible from either pi or pj. Two vertices pi and pj are visible if the line

segment [pi, pj] lies in P. It is unknown whether this decomposition can be found in o(n2) time and

neither is a super-linear lower bound known for this problem.

4.3.2 Special classes of polygons

The fastest known algorithm [ET88] for computing the RND of a simple polygon is O(n2).
On the other hand, for convex polygons the RND can be computed in O(n) time [Su83], and so can
the Delaunay triangulation [AGSS]. However, it is shown in [ART87] that O(n log n) is a lower
bound for computing the Delaunay triangulation on the vertices of a star-shaped or monotone poly-
gon. It is unknown whether any other proximity graphs can be computed in linear time for the case
of convex polygons. Furthermore, for most proximity graphs it is unknown whether they can be

computed in o(n2) time for special classes of simple polygons such as star-shaped, monotone or
unimodal polygons. For unimodal polygons the RNG and MST can be computed in O(n) time
[Ol89]. It is unknown whether the Delaunay triangulation on the vertices of a unimodal polygon
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of a set of disconnected dots. Such “objects” are called dot-patterns and are well modeled as sets
of points. Thus one of the central problems in shape analysis is extracting or describing the shape
of a set of points. Let S={x1, x2,..., xn} be a finite set of points in the plane. A proximity graph on

a set of points is a graph obtained by connecting two points in the set by an edge if the two points
are close, in some sense, to each other. The relative neighborhood graph (RNG) [To80a] and the
β-skeletons [KR85] are two proximity graphs that have been well investigated in this context. The
lune of xi and xj, denoted by Lune(xi, xj), is defined as the intersection of the two discs centered

at xi and xj with radius equal to the distance between xi and xj. The RNG is obtained by joining

two points xi and xj of S with an edge if Lune(xi, xj) does not contain any other points of S in its

interior. By generalizing the shape of Lune(xi, xj) one obtains generalizations of the RNG. One of

the best known proximity graphs on a set of points is the Delaunay triangulation (DT) and it is well
known that the DT is a supergraph of the RNG [To80a]. The β-skeletons are a generalization of
RNG’s and Gabriel graphs [MS80] and the lune-based neighborhoods in question are a function of
a parameter β. For particular values of β, the β-skeleton reduces to the RNG and the Gabriel graph.
In [To88c] a new graph termed the sphere-of-influence graph is proposed as a primal sketch intend-
ed to capture the low-level perceptual structure of visual scenes consisting of dot-patterns (point-
sets). The graph suffers from none of the drawbacks of previous methods and for a dot pattern con-
sisting of n dots can be computed efficiently in O(n log n) time. For a survey of the most recent
results in this area the reader is referred to the paper by Radke [Ra88].

4.2.1 The Relative Neighborhood Graph

In [JK89] it is shown that the RNG in 3-space can be computed in O(n2 log n) time and
O(µ3(S)) space where µ3(S) denotes the size of RNG(S). It is an open question whether this upper

bound can be improved. It is also not known how large µ3(S) can be over all instances of S. Denote

this value by µ3(n). It is shown in [JK89] that µ3(n) = O(n(3/2)+c) where c is a positive constant

and they conjecture that µ3(n) = O(n).

4.2.2 β-Skeletons

In [KR85] it was shown that lune-based β-skeletons with β > 1 could be computed in O(n2)
time. In [JKY89] it is shown that lune-based β-skeletons with 1 ≤ β ≤ 2 can be constructed in linear
time from the Delaunay triangulation in any Lp metric. The Delaunay triangulation in any Lp met-

ric can be computed in O(n log n) time [Le80].   It is an open question whether for β > 2 these

skeletons can be computed in o(n2) time.

4.2.3 The Sphere of Influence Graph

Avis and Horton [AH85] showed that the number of edges in the sphere-of-influence graph
is bounded above by 29n. The best upper bound to date is 17.5. This follows from a lemma of Bate-
man in geometrical extrema suggested by a lemma of Besicovitch (Geometry, May 1951, pp. 667-
675) and an observation of Kachalski. Bateman’s lemma gives 18n and Kachalski’s trick reduces



- 5 -

a pre-stored set B from a collection of sets representing the different pattern classes. The geometric
problem here is to determine whether there exists an affine transformation (a general linear trans-
formation followed by a translation) that maps each point of A onto a corresponding point of B.
Only recently has computational geometry been invoked here [HU87], [HH89] and much work re-
mains to be done. For the special case in which the cardinalities of A and B are equal, whether such
a transformation exists can be determined in θ(n log n) time where n is the said cardinality [HH89].
For a variety of computational geometric results in this area the reader is referred to [AMWW88].
A related problem here is to compute the similarity or distance between two polygons which could
represent the boundaries of shapes or the convex hulls of sets of points [To84]. This problem is in
turn closely related to the problem of approximating polygons by smoother ones or by polygons
with fewer vertices [ABGW90], [To85].

4. Computational Morphology

Computational morphology is concerned with the analysis, description, and synthesis of
shapes and patterns from a computational point of view. It is therefore of central concern to com-
puter vision. Once the objects in an image have been normalized, smoothed, and cleaned up it is
time to measure their shape using mathematical descriptors of shape [Se82]. This is referred to as
feature extraction.

4.1 Feature Extraction

Typically we calculate d features or measurements of the shape of an object yielding a fea-
ture vector X=[x1,x2,...,xd]. Thus an object, modeled as a polygon P, is mapped through this pro-

cess into a point in d-dimensional feature-space. Most features employed are of a geometric nature
and computational geometry has much to contribute to this aspect of computer vision as well. For
example the medial axis of P is a very powerful morphological descriptor [Le82] as are visibility
[To88d] and geodesic [To89] properties.

Symmetry is an important feature in the analysis and synthesis of shape and form [LT87].
As such it is not surprising that it has received considerable attention in the pattern recognition,
image processing, and computer graphics literatures. One of the earliest applications of computa-
tional geometry to symmetry detection was the algorithm of Akl & Toussaint [AT78] to check for
polygon similarity. Since then attention has been given to other aspects of symmetry and for ob-
jects other than polygons. For example, Sugihara [Su84] shows how a modification of the planar
graph-isomorphism algorithm of Hopcroft and Tarjan [HT73] can be used to find all symmetries
of a wide class of polyhedra in O(n log n) time.

Given a convex polygon P, associate with each point p in P the minimum area of the poly-
gon to the left of any chord through p. The maximum over all points in P is known as Winternitz’s
Measure of Symmetry and the point p* that achieves this maximum is called the center of area.
Diaz and O’Rourke [DO88] show that p* is unique and propose an algorithm for computing p* in

time O(n6 log2 n). For a survey of the most recent work on detecting symmetry see [Ea88].

4.2 The Shape of a Set of Points

In some contexts such as the analysis of pictures of bubble-chamber events in particle phys-
ics the input patterns are not well described by polygons because the pattern may consist essentially
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metry to cluster analysis can be found in [De86]. For more recent and novel approaches to the prob-
lem of partitioning point sets see [HS89]. Most cluster analysis algorithms depend heavily on the
computation of distances. The distance may be the diameter of a single set [BT87] or the minimum
[TB81] or maximum [BT83], [TM82] distance between two sets.

3. Image Processing

Once the objects in the image have been isolated they are massaged in one form or another
with the goal of making eventual classification easier. At this stage the objects may be treated sim-
ply as a connected collection of pixels which are processed usually in parallel in the more tradi-
tional forms of image processing [MP69], [Ro69], or they may be represented by their boundary
as polygons and processed using computational geometry in the more modern approach [ET88],
[Ke85] which nevertheless has early roots in the pioneering work of Feng & Pavlidis [FP75].

3.1 Normalization

Normalization is performed to make feature extraction simpler and to obtain better results.
Many such techniques are inherently geometric in nature. For example, in the context of handprint-
ed numeral recognition Nagy & Tuong [NT70] compute the convex hull of the boundary polygon
of a numeral, determine its four extreme points in the diagonal directions and then use a geometric
projective transformation to map the resulting quadrilateral into a square. Other approaches in-
volve finding the minimum-area rectangle enclosing the polygon for which a simple linear-time
algorithm is known [To83b].

3.2 Smoothing, Enhancement & Approximation

In spite of the application of normalization and noise removal the resulting boundary poly-
gons of objects may still require smoothing or enhancement and it may also be desired to reduce
the number of vertices of the polygons while retaining their inherent shape using polygonal ap-
proximation methods in order to reduce the complexity of subsequent algorithms applied to the
polygons. Here again is an area where computational geometry is playing an ever increasing role.
Smoothing and enhancement can be carried out for example by deleting carefully chosen branch-
es of the medial axis of the polygon [Le82]. Given a polygonal planar curve P= (p1,p2,...,pn) the
polygonal approximation problem can be cast in many different molds. One such version for
example calls for determining a new curve P= (p’1,p’2,...,p’m) such that, l) m < n, 2) the p’iare a
subset of the pi, and 3) any line segment [p’j,p’j+1] which substitutes the chain corresponding to
[pr,...,ps] in P is such that the distance between every pkfor k between r and s and the approximat-
ing line segment is less than some predetermined error tolerance. Recently Iri and Imal [II85] pro-
posed an elegant O(n3) algorithm that finds the approximation that minimizes m subject to the two
other constraints. In [To85c] it is shown how the complexity of their algorithm can be reduced to
O(n2 log n) time when the error criterion is changed. Furthermore, it is shown that the complexity
of the method can be further reduced to O(n2) if the curves are monotonic in a known direction.

For a survey of polygonal approximation techniques the reader is referred to the excellent
paper by Imai & Iri [II88].

3.3 Pattern Matching

One approach to pattern recognition avoids feature extraction or shape analysis altogether
and instead tries to match a set of points A (fiducial points obtained from the unknown object) to
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of the original range of light intensity values into a pre-specified number of sub-ranges called grey-
levels. In a binary picture there are only two levels and we speak of a “black-and-white” image.
The image segmentation problem consists of receiving a digital image I = {pij | 1 ≤ i,j ≤ n}, con-

sisting of an n × n array (also viewed as a square lattice) of pixels pij, as input and producing a

labelled planar subdivision of I as output. This presupposes labelling each pixel into categories.
This having been done each connected component of I consisting of pixels with the same label or
category corresponds to one of the regions in the subdivision. Each such connected component will
be called an object in the image. For a survey of image segmentation techniques the reader is re-
ferred to [HS85]. We discuss only two methods here.

2.1 Histogram Analysis and Threshold Selection

One of the simplest methods of segmenting an image, but not a very powerful one, is to
compute a histogram of all the pixels with every intensity value and select some threshold values
at the “significant” local minima of the histogram. Clearly, selecting k thresholds will yield k+1
categories of pixels. For simple pictures and simple tasks a single threshold which partitions the
image into “figure” and “background” is sufficient. For an example of the application of threshold-
ing to the segmentation of cervical cell images in the context of automated cervical cancer reco-
gnition the reader is referred to [CPT77]. In this example the pixels are classified into three cate-
gories corresponding to the labels: nucleus, cytoplasm, and background. Another area where
thresholding is used quite successfully is character recognition [Ba68]. There are a variety of meth-
ods for selecting thresholds [We78] and computational geometry is only beginning to be applied
here. For example, a frequently used heuristic for segmenting an image into grey-level clusters or
objects is to select thresholds at the bottoms of “valleys” on the histogram of the digital image. In
a novel approach Rosenfeld and de la Torre [RT83] proposed selecting the thresholds through a
more involved analysis of the convex deficiency of the histogram. The convex deficiency is ob-
tained by subtracting (in the set-theoretical sense) the histogram from its convex hull. In order to
compute the convex hull of the histogram they propose an algorithm of Rutovitz [Ru75] which runs

in time O(n2) where n is the number of grey levels.   However, as pointed out in [To83], the fact
that a histogram is a very special type of polygon, namely a monotonic polygon allows us to com-
pute the convex hull with a very simple O(n) time algorithm [TA82].

2.2 Cluster Analysis

One of the most powerful approaches to image segmentation that lends itself to the appli-
cation of complicated images such as those of outdoor scenes is the method of clustering and this
is an area where a great deal of computational geometry can be readily applied. In this approach
each pixel is treated as a complicated object by associating it with a local neighborhood in I. For
example, we may define a 5 × 5 neighborhood of pixel pij, denoted by N5 [pij], as {pmn | i-2 ≤ m

≤ i+2, j-2 ≤ n ≤ j+2}. We next measure k properties of pij by making k measurements in N5 [pij].

Such measurements may include various moments of the intensity values (grey levels) found in N5
[pij], etc. Thus each pixel is mapped into a point in k-dimensional pixel-space. Performing a cluster

analysis of all the resulting n × n points in pixel-space yields the desired partitioning of the pixels
into categories. For an elegant treatment of the subject of cluster analysis the reader is referred to
the book by Jardine and Sibson [JS71]. A good treatment of the application of computational geo-
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Fig. 1   Decomposing the computer vision problem into sub-problems.
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[PS85] covers most of the early work in this area. Mehlhorn [Me84] contains a subset of the ma-
terial found in Preparata & Shamos and a few different results. The combinatorial aspects of dis-
crete and computational geometry are treated in depth in the book by Edelsbrunner [Ed88]. The
question of visibility, of great interest to graphics, computer vision and robotics, is notoriously ab-
sent from the three texts mentioned above. However visibility is given a clear, excellent, and com-
prehensive treatment in the recent book by O’Rourke [O’R87]. Other computational geometric as-
pects of computer graphics are well treated by Stolfi [St91]. One of the most fundamental struc-
tures in computational geometry is the Voronoi diagram and since the “birth” of computational
geometry a score of variants on this structure have appeared. The books by Rolf Klein [Kl89] and
Kokichi Sugihara [Su92] are entirely devoted to this subject. There have also appeared three books
which are collections of papers covering almost all aspects of computational geometry. The book
edited by Preparata [Pr83] contains twelve papers on early material. More recent results can be
found in the two books edited by Toussaint [To85], [To88a] and in the robotics-oriented collec-
tions edited by Schwartz et al., [SSH87] and Schwartz & Yap [SY87]. Journals are also starting to
devote special issues to computational geometry such as The Visual Computer [To88], Pattern Re-
cognition Letters [To92], and The Proceedings of the IEEE [To92]. Finally we mention a book
which, although may not contain much on the computational aspects of geometry, certainly covers
much material of direct interest to computer vision. This is the delightful book edited by Senechal
& Fleck [SF88]. In addition to these books there exist three survey papers on those aspects of com-
putational geometry of most relevance to computer vision [To80c], [To85b], and [To86].

2. Image Segmentation

The transducer converts a light intensity array from the real world into a two dimensional
array or digital image of pixels (picture elements) which are numbers resulting from a quantization
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ABSTRACT

Computer vision is concerned with the development of machines that can process
visual information. Computational geometry is concerned with the design of algo-
rithms for solving geometric problems. Most problems in computer vision can be
couched in geometric terms. In this paper we outline how computational geometry
may significantly contribute to almost every aspect of computer vision and we pro-
vide pointers to a selection of the computational geometry literature where some of
the most relevant results can be found.

1. Introduction

Computer vision has flourished now for some forty years as a sub-discipline of artificial
intelligence and hundreds of books are readily available on the subject and will not be mentioned
here. The best early book on computer vision, and still up to date from the point of view of discrim-
inant function analysis, is the text by Duda & Hart [DH73]. Popular more recent books include Bal-
lard & Brown [BB82] and Horn [Ho86]. Finally we mention the first two books that are the fruit
of the marriage between computer vision and computational geometry and these are the mono-
graphs by Ahuja & Schacter [AS83] and Sugihara [Su86].

It is useful to decompose the computer vision problem into a series of subproblems that are
usually tackled sequentially and separately in some order such as that illustrated in Fig. 1. The pur-
pose of a computer vision program is to analyze a scene in the real world with the aid of an input
device which is usually some form of transducer such as a digital camera and to arrive at a descrip-
tion of the scene which is useful for the accomplishment of some task. For example, the scene may
consist of an envelope in the post office, the description may consist of a series of numbers sup-
posedly accurately identifying the zip code on the envelope, and the task may be the sorting of the
envelopes by geographical region for subsequent distribution. Typically the camera yields a two-
dimensional array of numbers each representing the quantized amount of light or brightness of the
real world scene at a particular location in the field of view. The first computational stage in the
process consists of segmenting the image into meaningful objects. The next stage usually involves
processing the objects to remove noise of one form or another. The third stage consists of feature
extraction or measuring the “shape” of the objects. The final stage is concerned with classifying
the object into one or more categories on which some subsequent task depends.

Computational geometry, a fifteen-year old explosive discipline of computer science, con-
tinues to flourish at an exponentially increasing rate and make its presence felt in new areas. Sev-
eral books have already appeared on the subject. An introductory text by Preparata & Shamos


