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fixed. Furthermore, only one point will have an integral x-coordinate and thus achieve the

maximum aperture angle by the construction of Q. The adversary will ensure that this point

is fixed only after n-2 chains are fixed. Therefore, Ω(n log(m/n)) queries must be made before

the x-coordinate of the point with the maximum aperture angle is fixed.

On each floating chain, space is reserved for the ((m/n)j + k)th point, for 1 ≤ k < m/n, at both

j-1/2 + k/(4m/n) and j+ 1/4 + k/(4m/n). The adversary responds to a query for xi as follows:

if xi is fixed, it reports (xi, -1/xi). Otherwise xi is in a floating chain and i = ((m/n)j + k) for

some integer 1 ≤ k < m/n. If this is the last floating chain, then the adversary fixes xi = j and

fixes all other floating points in that chain to their reserved spots before or after xi as needed

to preserve their order. If xi is not in the last floating chain, then the adversary fixes either all

points of the floating chain before and including xi to their reserved spots less than j or all

points including xi and after to their spots greater than j, which ever causes fewer points to be

fixed. These actions force all but one floating chain to be fixed before the algorithm discovers

which point is fixed to (j,-1/j) for some integer j and, thereby, finds out which aperture angle

achieves the maximum value of π/2. Since the adversary ensures that Ω(log(m/n)) steps are

required to fix each chain, this gives the bound of Ω(n log(m/n)) queries. Q.E.D.

Notice that all computations can be performed in rational arithmetic with numerators and de-

nominators bounded by small polynomials in n and m. Thus, the adversary can operate within the

standard unit-cost RAM model of computation with word length logarithmic in n + m.

6.  Concluding Remarks

In this paper we considered the problem of computing the aperture angle of a camera that is

allowed to travel in a convex region in the plane and is required to maintain some other convex

region within its field of view at all times. We presented an O(n + m) time algorithm for computing

the minimum aperture angle with respect to a convex polygon Q when x is allowed to vary in P.

We also presented algorithms with complexities O(n log m), O(n + n log (m/n)) and O(n + m) for

computing the maximum aperture angle. Finally, we established an Ω(n + n log (m/n)) time lower

bound for the maximization problem and an Ω(m + n) lower bound for the minimization problem

thereby proving the optimality of our algorithms.
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The vertices ofP are chosen on the hyperbolay = -1/x for 3/2≤ x ≤ n + 1/2 and polygon Q

has vertices (0,0),qi = ((3i4-1) / 2i3, (i4-3) / 2i) for integers 2≤ i ≤ n, and (0, n3). Theseqi are chosen

so that the following properties hold:

(1) the chain fromq2 to qn is convex,

(2) the slope of the line containingqi andqi+1 is positive for 2≤ i ≤ n,

(3) the circle with diameter from the origin toqi is tangent toy = -1/x at a point onx = i,

(4) the ray from the point (i,-1/i) through pointqi intersects Q only at pointqi.

To verify (1) and (2), note that the slope of the line containingqi andqi+1 is greater thani2

but less than 2i2. Since this slope is positive and increasing withi, (1) and (2) hold. To verify equa-

tion (3), observe that the equation of the line that bisects the origin and the point (i, -1/i) is given

by (y + 1/2i) / (x - i/2) = i2. The line normal toy = -1/x atx = i is (y + 1/i) / (x - i) = -i2. These two

lines intersect at the circle center ((3i4-1) / 4i3, (i4-3) / 4i) and the pointqi is double this vector. As

a result, if (i, -1/i) is a vertex ofP, then the aperture angle, which is defined by the origin andqi ,

has a local maximum ofπ/2 at that vertex. Otherwise, aperture angles usingqi are less thanπ/2, in

accordance with observation 2.1. Finally, (4) holds since the chain fromq2 to qn is convex and the

slope of the line containing (i, -1/i) andqi is less than the slope of the line containingqi andqi+1.

With this construction we can now prove the following lower bound by an adversary argu-

ment.

Theorem 5.4: The complexity of computingθmax(v) is Ω(n log(m/n)) whenm is ω(n).

Proof: Initially, the algorithm knows the polygonQ, as described above, and knows that the ver-

tices ofP havex coordinates 3/2≤ x2m/n < x2m/n+1 <...<xm ≤ n+1/2 and lie on the curvey = -

1/x (The rather strange looking subscripts are chosen so as to make later index calculations

easier.) The algorithm discovers the exact point (xi -1/xi) by a query to an adversary. Since

knowing thex coordinates is sufficient, we focus on these. We will show thatΩ(n log(m/n))

queries are necessary. The previous section showed that O(n log(m/n)) were sufficient.

The adversary begins by fixing every (m/n)th point on the curve:x(m/n)j = j- 1/2, for integers

2 ≤ j ≤ n. The chain between two consecutive “fixed” points is said to befloating since thex-

coordinates of the points in that chain are not yet fixed. Initially, there aren-1 floating chains

and each chain containsm/n-1 points whosex-coordinates are not fixed. We will say that a

floating chain isfixed when all the points in that chain arefixed. We will show that the ad-

versary can ensure thatΩ(log(m/n)) queries are asked before all points in a floating chain are
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Tn-1 obtained from the previous construction of Q. Now consider an interval [Ti-1, Ti] on this

edge of P. Since θ(x) is upwards unimodal in this interval it follows from lemma 2.6 that its

minimum value is determined by one of its end points. Therefore θmin(v) is determined by

one of the tangent points Ti. Recall that θ(Ti) = π/2 for i = 0, 1, 2,..., n-1. Therefore, if any

algorithm does not inspect a diagonal di, then an adversary can modify this diagonal so that

there exists a point on the x-axis that yields a global minimum less than π/2. This modifica-

tion may be accomplished by picking an arbitrary edge [qi-1, qi] of Q and increasing its slope

by a suitably small but positive amount without changing the position of qi-1, thus creating a

small open interval on the x-axis which lies in between and outside both circles Ci-1 and Ci

in which θ(x) < π/2 and where the global minimum is located. Q.E.D.

Theorem 5.3:  The complexity of computing θmax(v) is Ω(n).

Proof: We construct polygon P such that no part of it lies above the x-axis and such that one of

its edges belonging to IB(P) lies flush with the x-axis and contains all the tangent points T0,

T1, T2,..., Tn-1 obtained from the original construction of Q. Recall that the aperture angles at

all tangent points Ti are each π/2. Now consider the function θ(x) in the range of some interval

[Ti-1, Ti]. Since throughout this interval, Q behaves as the diagonal di and [Ti-1, Ti] is also a

chord of Ci that is not intersected by di, it follows from lemma 2.1 that θ(x) is upwards uni-

modal in this range and therefore contains a local maximum with a value greater than π/2.

The exact value of the local maximum in the interval [Ti-1, Ti] is determined by the distance

between Ti-1 and Ti which is also the relative length of the chord [Ti-1, Ti] of the circle Ci. We

can select every Ti after T0 so that the local maximum for every interval is π/2 + ε, where ε
is a fixed small positive number. If any algorithm does not inspect diagonal di then an adver-

sary can move vertex qi further out along ri-1 and make a local maximum angle greater than

π/2 + ε (i.e., the global maximum) for some x in interval [Ti-1, Ti]. Q.E.D.

Note that for the Ω(n) lower bound of the maximum aperture angle problem no assumptions

are made on the size of polygon P. When m is O(n) this proves that our algorithms with complex-

ities O(n + n log(m/n)) and O(n + m) are optimal. However when m is ω(n) this lower bound no

longer proves optimality. We will use a similar but more complicated construction that proves an

Ω(n + n log(m/n)) lower bound for the θmax(v) problem when m is ω(n).

First we choose a suitable pair curves on which the m vertices of P and n vertices of Q will

lie. Then we pick the vertices of Q so that there are n local maxima of angle at most π/2. Finally

an adversary reveals the vertices of P in response to queries in such a way that log(m/n) queries

must be asked to determine the true angle of each local maximum.
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from the fact that both angles ang(qn, T0, q1) and ang(qn, T1, q1) are π/2. At the next iteration q2 is

located on r1 and above q1 thus preserving convexity. When the (n + 1)st vertex is located it is con-

nected to qn thus completing Q.

To summarize the inductive step assume we are given the above construction at step k. In oth-

er words, we constructed the tangent point Tk, the ray rk, the vertex qk and the circle Ck with diam-

eter dk = [qn, qk] and we want to insert vertex qk+1. Accordingly, we pick a point Tk+1 to the right

of Tk on the x-axis. We find the intersection point zk+1 of [qn, Tk] with the circle Ck. That such an

intersection point exists with the required property that zk+1 be left of Tk+1 follows from the fact

that circle Ck intersects the x-axis at both Tk and Tk-1 and therefore the arc(Tk, qk) lies above the x-

axis. Next we construct ray rk+1 emanating at Tk+1 and parallel to [zk, qk] which creates the desired

vertex qk+1 at its intersection with rk at a point above and to the right of qk and above ray rk-1, thus

maintaining the convexity of Q.

We will now use Q to establish our first lower bounds.

Theorem 5.2:  The complexity of computing θmin(v) is Ω(n).

Proof: We construct P to lie within the strip determined by 0 ≤ y ≤ 1/2 such that one of its edges

belonging to OB(P) is flush with the x-axis and contains all the tangent points T0, T1, T2,...,

T0 T1

x-axis
z1

(1,1)
qn q0

q1

C1

C0 d1

r1

r0

Fig. 13 Illustrating the Ω(n) bounds on θmax(v) and θmin(v).

(0,1) (2,1)
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as desired. Successively we pick points on the x-axis increasingly far from (0,1), lower the blade

and discard the paper below the cut. We also make one cut at y = 1. This leaves a convex but still

unbounded polygon (the shaded region in Fig. 12). To fix this we make one final cut along a line

through (0,1) and of sufficiently large but finite slope.

Let us consider the above idea in more detail. For simplicity assume that Q has n + 1 vertices

labelled q0, q1,..., qn in counter-clockwise order. We begin by locating the last and first vertices of

Q at qn = (0,1) and q0 = (2,1), respectively, and constructing the circle C0 of unit radius centered

at (1,1) (see Fig. 13). Let x = T0 be the point at which C0 is tangent to the x-axis. Let r0 denote the

ray starting at T0 in the direction of q0. The next edge of Q, namely [q0, q1], is chosen to lie on r0.

To know where on r0 to locate q1, pick any point on the x-axis some finite distance to the right of

T0 and call it T1. The line segment [qn, T1] must intersect C0 at a point z1 in the interior of the arc

of C0 (measured in a counter-clockwise direction) given by arc(T0, q0), with the property that z1 is

smaller than T1. Next construct the ray r1 starting at T1 in an upwards direction parallel to [z1, q0].

Since the line through [z1, q0] intersects r0 at q0, and z1 lies to the left of T1, r1 must intersect r0 at

some point to the right and above q0. We locate vertex q1 at this intersection point and call [qn, q1]

the diagonal d1 of Q. To finish the procedure that is to be iterated we construct a circle C1 with

diameter d1 that passes through the four points {qn, T0, T1, q1}. That such a circle exists follows

x-axis

y-axis

(0,1)

Fig. 12 Illustrating the con-

struction of polygon Q.
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located in the upper semi-circle (see Fig. 11). These polygons have the property that every

edge of each of the two polygons can be extended by an arbitrarily large distance without in-

tersecting the interior of any other edge in either polygon. Therefore polygonQ has the ap-

pearance of a line segment to a viewer inP. In particular,Q behaves as if it were the edge

[qn, q1]. Therefore, by lemma 2.6,θmin(v) must be realized by a vertex ofP. Furthermore,

note that sinceP’s vertices are on the circleC and edge [qn, q1] is a chord of the same circle,

it follows that the aperture angle at each vertex ofP is equal. If any algorithm does not inspect

a vertexpi, then an adversary can move it outward and make the smallest angle occur atpi.

Q.E.D.

We turn now to the construction for theΩ(n) bounds. First we construct a polygonQ of n

vertices in the first quadrant ofR2 in such a way that the aperture angle functionθ(x) containsΩ(n)

local maxima. The general idea may be likened to cutting a convex polygon from a piece of paper

with an office paper cutter. With such a cutter one may slide the paper against a supporting border

in a direction orthogonal to the cutting blade, then lower the blade at the desired position. We will

fix the paper and move the cutter. In particular, we will rotate the cutter frame and translate the

blade before each cut. Assume that our original piece of paper consists of the first quadrant ofR2

and refer to Fig. 12. Our paper cutter is anchored at the point (0,1) about which it is allowed to

rotate. Once a position of the cutter is fixed, the infinite blade may be translated as far from (0,1)

Fig. 11 Illustrating theΩ(m) lower bound onθmin(v).

p1

p2
pm-1

pm

q1

q2

qn

C

P

Q
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5.  Lower Bounds

In the previous two sections we described algorithms for computingθmax(v) andθmin(v). We

presented three algorithms for computingθmax(v). Their running time complexities are O(n + m),

O(n log m) and O(n + n log(m/n)). We also gave an algorithm for computingθmin(v) in O(n + m)

time.

In this section we show that the complexity of computingθmin(v) is Ω(max (m, n)). We also

show a time complexity ofΩ(max(n, n log(m/n))) for computingθmax(v). This proves the optimal-

ity of the algorithms to computeθmax(v) andθmin(v). We begin by describing a construction that

provesΩ(m) is a lower bound for computingθmin(v). Then we describe another construction that

showsΩ(n) is a bound forθmin(v) and which also affords a simple modification of it to establish

the same bound forθmax(v). Finally, whenm is ω(n), we establish anΩ(n log(m/n)) lower bound.

Our lower bounds rely on the fact that the polygons are given in the form of linear arrays, a very

natural representation.

Theorem 5.1:  The complexity of computingθmin(v) is Ω(m).

Proof: We create two convex polygons, the vertices of which lie on the unit circleC centered at

the origin. ForP we choose vertices on the lower semi-circle ofC, whereasQ’s vertices are
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Therefore θmin(v) is realized by a vertex of a face fi of F(P) that lies on OB(P). But these ver-

tices are precisely either the vertices of P or the intersection points that the rays extended

from Qa and Qb make with OB(P). Q.E.D.

Theorem 4.2: θmin(v) can be computed in O(n + m) time.

Proof: As in the proof of theorem 3.3, we compute an extended outer chain EOB(P) by inserting

dummy vertices in OB(P) where the rays of the extended edges from Qa and Qb meet OB(P).

For each edge in EOB(P) the aperture angle is determined by a single diagonal of Q. From

corollary 2.2 it follows that a candidate solution is determined for each edge of EOB(P) by

one of its end points. The correctness of this procedure is immediate from lemma 4.1. The

computational tools are the same as those used in the proof of theorem 3.3 and O(n + m) time

suffices. Q.E.D.

Fig. 10 Illustrating that the min-

imum aperture angle on P with

respect to Q may be realized by

non-vertex points of P.

Q

P
pr ps
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4.  The Case of Two Convex Polygons: The Minimization Problem

We assume as before thatP = [p1, p2,..., pm] is represented by an array in clockwise order andQ =

[q1, q2,..., qn] is represented by an array in counterclockwise order. Letv be the point inP where

the viewer (camera) is located. The minimum aperture angle with respect toQ over all locationsv

in P is denoted byθmin(v).

Problem: Given two disjoint convex polygonsP andQ in the plane withm andn vertices, respec-

tively, find θmin(v).

Before we characterize the solution points inP for θmin(v) we recall the characterization for

thePolygon-to-Segment minimization problem presented in lemma 2.6. In that problem, because

the solution is trivially zero when the line through the segment that is viewed intersects the poly-

gonP, it was assumed that the line does not intersectP. Because of this assumption the points in

P where the aperture angle reaches a minimum lie on vertices ofOB(P). On the other hand, in the

general problem considered here this characterization is no longer valid. It suffices to consider a

configuration such as that illustrated in Fig. 10 whereP is thin and wide withOB(P) a single seg-

ment [pr, ps] andQ is thin and tall “pointing” towards the central region of [pr, ps]. In such an

exampleθmin(v) is realized by a pointv in the interior of [pr, ps] and not by eitherpr or ps. Never-

theless, we now show that in general the solution can only occur at a finite number of locations in

OB(P), and that these may be searched efficiently.

Lemma 4.1: θmin(v) is realized by a point onOB(P) that is either a vertex ofOB(P) or an inter-
section point ofOB(P) with a line that is colinear with an edge ofQ.

Proof: The two separating tangents ofP andQ partition the plane into four wedges. LetW(P)

denote the wedge that containsP. Therefore the solution must lie inW(P). Now partition

W(P) into a convex subdivision as follows. For each vertexqi in Qa (except the last vertex of

Qa) construct the infinite half ray in the direction ofqi+1 and denote it byray(qi, qi+1). Sim-

ilarly, for each vertexqj in chainQb (except the last vertex ofQb) constructray(qj+1, qj). Fi-

nally, construct rays from the first and last vertices ofQa andQb along the common and sep-

arating tangents ofP andQ and in the direction ofP. This arrangement of rays induces a sub-

division ofW(P) and hence ofP. Denote the resulting subdivision ofP by F(P). Each facefi
of F(P) is a convex polygon with the property that the aperture angle of any pointv in fi is

determined by one and the same diagonal ofQ, saydi. Therefore, for each facefi of F(P) we

have an instance of thePolygon-to-Segment problem and by lemma 2.6 the solution to sub-

problemfi is determined byOB(fi) with respect todi. If the solution to a subproblemfi does

not lie inOB(P) then the same argument used in the proof of lemma 2.6 shows that a smaller

aperture angle exists inOB(P).
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Using Jensen’s inequality and equation (1) above we have:

Thus the total time taken to compute all theai’s is O(n + n log(m/n)). In the same way, all

the intersection pointsbj from the setB can be computed in O(n + n log(m/n)) time. Finally,

the two sets can be merged in O(n) time as shown in the proof of theorem 3.4.

Merging the two ordered sets creates a partitionR(P) of chainIB(P). Every pair of consecu-

tive intersection points rk-1 andrk in R(P) forms a convex polygonal chainRk(P) which is a

subset ofIB(P). If the chain has less then 3 edges, the solution can be found in constant time.

Otherwise a binary search can be used to find a candidate aperture angle for eachRk(P). Fi-

nally, the maximum of all these candidates is chosen as the maximum aperture angle. The

correctness of this procedure follows from corollary 2.1 and lemmas 2.1-2.4.

We now analyze the complexity of computing the maximum aperture angle. Letck represent

the number of edges in chainRk(P).

Note that:

Furthermore, the total time taken to find the maximum aperture angle equals:

which, by Jensen’s inequality and equation (2) is no greater than:

Q.E.D.

TA n m,( ) O mlog n n m n⁄( )log+ +( )≤

O n n m n⁄( )log+( )=

ck
k
∑ m≤ (2)

O n n m n⁄( )log max 1 cklog,{ }
k
∑+ + 

 

O n n m n⁄( )log+( )
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the right of the edge j at which ai+1 occurs, i.e. ai+1 is on edge j + wi+1. The strategy used to

find ai+1 is quite simple. We first check to see if ai+1 occurs on edge j, then we check edge

j+1, edge j+2, edge j+4 and so on. In short, we verify edges j+2t (t = 0,...) until we find the

first edge j+2s which either contains, or is to the right of, ai+1. This implies that ai+1 occurs

on one of the edges in the chain from j+2s-1 to j+2s. If s > 1 then we apply binary search on

this chain to find edge j+wi+1.

Let us analyze the complexity of the search procedure. In the first step, we find the edge j+2s.

If ai+1 occurs on edges j, j+1, or j+2, we expend a constant amount of time to find it. If it

occurs beyond edge j+2, then we expend O(log s) time. Therefore, this step takes time

max{O(1), O(log s)}.

If s > 1, then in the second step, we apply a binary search on the chain from j+2s-1 to j+2s.

The binary search takes time O(log s). Note that for s > 1, we have that wi+1 ≤ 2s ≤ 2wi+1.

Therefore, the total time used to find ai+1 is max{O(1), O(log s)} which in turn equals

max{O(1), O(log wi+1)}.

We now analyze the time TA(n,m) taken to compute all the intersection points ai from the set

A. First, finding a1 takes O(log m) time. To find every subsequent ai takes time equal to

max{O(1), O(log wi)}.

Note that

Therefore, the total time TA(n,m) equals:

wi
i 2=

n

∑ m≤ (1)

O mlog max 1 wilog,{ }
i 2=

n

∑+( )

O mlog 1
wi 2< i, 2…n=

∑ wilog
wi 2≥ i, 2…n=

∑+ +( )≤

O mlog n wilog
wi 2≥ i, 2…n=

∑+ +( )≤
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Theorem 3.4: θmax(v) can be computed in O(n log m) time.

Proof: Consider the partitionR(P) obtained by merging the two ordered setsA andB. Every pair

of consecutive intersection pointsrk-1 andrk in R(P) forms a convex polygonal chainRk(P)

which is a subset ofIB(P). For each such chain its maximum aperture angle is determined by

a single diagonal ofQ. Therefore we may use binary search to find a candidate aperture angle

for Rk(P) for eachk. The correctness of this procedure follows from corollary 2.1 and lemmas

2.1-2.4.

Consider now the complexity. We may use the algorithm of Chazelle and Dobkin [CD87] to

determine all the intersection points (theak’s andbk’s) that form the setsA andB, respective-

ly. Since there are at mostn intersections and each one is found in O(log m) time, the setsA

andB are found in O(n log m) time. We now show how to mergeA andB in O(n) time.

Let the edges ofIB(P) be numbered 1, 2,...,k in clockwise order. When computing eachak

andbk, we associate with the intersection point a pointer to the label of the edge ofIB(P) on

which the intersection point occurs. For example, ifa1 occurs on edge5 then we store edge

5 with a1 and so on. Now we can merge setsA andB in O(n) time since the sorted order of

the intersection points (theak’s andbk’s) is known and the labels of the edges on which these

intersections occur is known. Thus, we avoid looking at the whole chainIB(P) and only con-

centrate on the edges which contain intersection points.

Finally, computing a candidate aperture angle forRk(P) for eachk takes O(log m) time for

the binary search. Since there are at most O(n) candidates to be computed, finding the max-

imum takes O(n log m) time. Q.E.D.

The above algorithm can in fact be improved to O(n + n log (m/n)) time. The improvement is

based on a method of finding theintersection points (theak’s andbk’s) that form the setsA andB

in a more efficient manner. We outline this method below.

Theorem 3.5: θmax(v) can be computed in O(n + n log(m/n)) time.

Proof: We first show how to find all intersection pointsai from the setA in O(n + n log(m/n))

time. The points from setB can be found in the same way. We number the edges ofIB(P) =

1, 2,..., k in clockwise order.

In O(logm) time using the algorithm of Chazelle and Dobkin [CD87] we find the edge j con-

taininga1. Since the chainA is convex, theai's occur in sorted order on the chainIB(P). We

find theai's in order of their occurrence.

Given thatai occurs on edgej, we show how to findai+1. Letwi+1 be the number of edges to
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be found by advancing either one edge on IB(P) or one extended edge of Qa, whichever

comes first. Therefore with this alternating traversal of the edges of IB(P) and Qa the set A of

all the intersection points generated by Qa can be found and inserted in IB(P) in O(n + m)

time. Subsequently, in the same way the set B of all the intersection points generated by Qb

on IB(P) can be found and inserted in O(n + m) time. Therefore the extended chain EIB(P)

can be found in O(n + m) time. Furthermore, as we advance along edges of P to find the next

intersection point of an extended edge of Qa (similarly for Qb) we insert pointers from these

edges of EIB(P) to their tangent vertices of Q. Therefore, for each edge of EIB(P) we can sub-

sequently find the candidate diagonal of Q that determines its aperture angle in constant time

per candidate. Finally for each such diagonal-edge pair candidate we may compute a candi-

date maximal aperture angle also in constant time per candidate. Therefore the overall pro-

cedure takes O(n + m) time. Q.E.D.

In the above O(n + m) time procedure the chain EIB(P) is obtained by merging the two

ordered sets A and B (that jointly form R(P)) with the chain IB(P) in O(n + m) time, and subse-

quently computing O(n + m) candidates for θmax(v), each in constant time. We may obtain a diffe-

rent upper bound on the problem by computing only O(n) candidates for θmax(v), each in time

O(log m), as we now show.

Fig. 9 Illustrating the partition of the boundary of P into regions (edges)

where the aperture angle is determined by a single diagonal of Q.

Q n vertices

P m vertices
a1

a2 a3
a4 a5 b1

b2b3

Qa

Qb

IB(Q)

qi qj

qk qt
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the edges of Q that belong to IB(Q) and OB(Q) divides the boundary of Q into two chains that we

denote by Qa and Qb. We denote by A the ordered set of intersection points between the extended

edges of Qa and IB(P), and by ak the intersection of the k-th extended edge from Qa with IB(P).

These vertices are illustrated by black circles in Fig. 9. Analogously B is the ordered set of inter-

section points between the extended edges of Qb and IB(P), and bk denotes the intersection of the

k-th extended edge from Qb with IB(P). These vertices are illustrated by white circles in Fig. 9.

Finally, the original vertices of P are illustrated by grey circles in Fig. 9. Let the partition of the

boundary of P obtained by merging the two ordered sets A and B be denoted by R(P) and the re-

sulting merged intersection points by r0, r1,..., rs. Every pair of consecutive intersection points rk-

1 and rk in the merged set forms a piece of the boundary of P and is denoted by Rk(P). Note that

these resulting polygonal chains are convex with respect to Q. Furthermore, for every such convex

chain the aperture angle is defined by one and the same diagonal of Q. More precisely, with argu-

ments similar to those of lemma 2.8 we can establish the following result.

Lemma 3.2: For every polygonal chain Rk(P)
⊆

 IB(P) in the partition of bd(P), there are two ver-
tices qk ∈ Qa and qt ∈ Qb such that for every point x ∈ Rk(P), the aperture angle θ(x) with respect
to Q is given by ang(qs x qt).

Therefore lemma 2.5 is applicable to each chain Rk(P), where the diagonal plays the role that

the segment ab plays in lemma 2.5.

Theorem 3.3: θmax(v) can be computed in O(n + m) time.

Proof: Let EIB(P) denote the extended inner boundary of P with respect to Q, obtained by in-

serting dummy vertices in IB(P) where the extended edges of Q intersect IB(P). The polyg-

onal chain EIB(P) is convex with respect to Q and contains O(n + m) edges. For each such

edge we find the vertices of Q that admit tangent rays to Q from any point on the edge. These

vertices yield a candidate diagonal of Q for each such edge in question. We then compute a

candidate maximal aperture angle with respect to Q for that edge by computing the maximum

aperture angle for the candidate diagonal. Finally, we select the candidate with a maximum

value as θmax(v). The correctness of this procedure follows from corollary 2.1 and lemmas

3.1 and 3.2.

Consider now the complexity. Using the rotating calipers [To83], we may find the common

and separating tangent points of support between P and Q in O(n + m) time. Alternately, we

may use the algorithm of Rohnert [Ro86] and accomplish the same task in O(log n + log m)

time if desired. Therefore the chains IB(P) and the Qa and Qb sub-chains of OBc(Q) may be

found within the same time complexity. The first intersection point a1 that the first extended

segment of Qa makes with IB(P) may be found in O(log m) time using the algorithm of Cha-

zelle and Dobkin [CD87]. Due to convexity each subsequent intersection point a2, a3... can
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3.  The Case of Two Convex Polygons: The Maximization Problem

We now have the tools to solve the general problem where the object that must be kept in the field

of view is one convex polygon Q, and the region where the camera is allowed to roam is another

convex polygon P. We assume that P = [p1, p2,..., pm] is represented by an array in clockwise order

and Q = [q1, q2,..., qn] is represented by an array in counterclockwise order, in order to simplify

notation. Let v be the point in P where the viewer (camera) is located. The maximum aperture angle

with respect to Q over all locations v in P will be denoted by θmax(v). Let OBc(Q) denote the portion

of the boundary of Q not containing OB(Q) together with end points qi and qj. Note that OBc(Q)

could be the entire boundary of Q (see Fig. 8).

Problem: Given two disjoint convex polygons P and Q in the plane with m and n vertices, respec-

tively, find θmax(v).

Lemma 3.1: θmax(v) is realized by a point v on IB(P).

Proof: The proof is similar to that of lemma 2.2.

.

Fig. 8

Given that the maximum aperture angle is reached at a point on IB(P), we define a partition

of IB(P), similar to the partition of the line in the Line-to-Polygon problem. For every edge e of

OBc(Q) - IB(Q), extend e until it intersects P (refer to Fig. 9). The resulting intersection points de-

termine the desired partition. Notice that the extension of the edges of IB(Q) and OB(Q) do not in-

tersect P and therefore we need only consider the extension of edges in OBc(Q) - IB(Q). Removing

P

Q

qt

pj

qk

pi
qj

qi

pr

ps

IB(P)
OBc(Q)
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As a consequence of lemma 2.8 the aperture angle functionθ(x) with respect toQ is piece-

wise defined overL. For every intervalIk, the problem is reduced to the Line-to-Segment problem,

where the segmentdk is determined by the diagonal ofQ spanning the two vertices that define the

interval Ik. Therefore, to find the maximum (respectively, minimum), we simply compute candi-

dates for the maximum (respectively, minimum) for every interval and choose, as the global max-

imum (respectively, minimum), the maximum (respectively, minimum) of all the candidates.

The algorithm to compute the maximum aperture angle is given below. Recall that for every

intervalIk = [rk , rk+1] in the partition described above, there are two verticesqs ∈ Qa andqt ∈ Qb

that determine a diagonaldk of Q, such that for every pointx ∈ Ik the aperture angleθ(x) with re-

spect toQ is given byang(qs x qt). To compute the minimum, simply find the minimum in step 3

and change the direction of the inequality in step 4.

Algorithm Line-to-Polygon

Input: A convex polygonQ with n vertices and a lineL that does not intersectQ.

Output: A pointx in L for which the aperture angleθ(x), with respect toQ, is maximum.

Begin

Step 1.- Find the partititon ofL into intervalsI0, I1,..., In.

Step 2.- For every intervalIk find the diagonaldk such that the aperture angle function

with respect toQ anddk coincide overIk.

Step 3.- For everyintervalIk find xk ∈ Ik such that the aperture angle, with respect todk

is a maximum over Ik.

Step 4.- Exit with xi is such thatθ(xi) ≥ θ(xj) for all j = 0, 1,..., n.

End

Theorem 2.1: Algorithm Line-to-Polygon finds in O(n) time a pointx ∈ L, such thatθ(x) is a max-

imum with respect toQ.

Proof: Step 1 can be done in O(n) time by first scanning the polygon’s edges, extending the edg-

es to rays in the appropriate direction, and intersecting the resulting rays with the lineL. This

process is then repeated by scanning in the opposite direction. Finally, due to convexity, the

two resulting sorted lists of intersection points onL can be merged inO(n) time. By lemma

2.8, step 2 may be performed in O(n) time. To compute each pointxk in step 3 O(1) time suf-

fices by corollary 2.1 and since there are O(n) intervals, step 3 can be done in O(n) time. Thus

Algorithm Line-to-Polygon takes O(n) time to find apointx in L for which the aperture angle

θ(x), with respect toQ, is a maximum. Q.E.D.
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Fig. 7 (b)

If rk+1 = at (i. e. rk+1 is the intersection point of L with the extension of the edge (qt, qt+1) of

Qb) then for interval Ik+1, θ(x) is given by ang(qs x qt+1), for all x ∈Ik+1 (see Fig. 7 (c)).

Fig. 7 (c)

Thus by induction the lemma follows. Q.E.D.
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The following lemma provides the link between the Line-to-Segment problem and the Line-

to-Polygon problem by reducing the latter to a family of instances of the former.

Lemma 2.8: For every interval Ik = [rk, rk+1] in the partition, there are two vertices qs ∈ Qa and
qt ∈ Qb, that determine a diagonal dk of Q, such that for every point x ∈ Ik the aperture angle θ(x)
with respect to Q is given by ang(qs x qt).

Proof: Since qh and ql are the highest and lowest points of Q, respectively, then we have that for

all x ∈ I0 = (-∞, r1], θ(x) is given by ang(qh x ql), (see Fig. 7 (a)).

Fig. 7 (a)

Suppose that for interval Ik = [rk, rk+1], θ(x) is given by ang(qs x qt) for all x ∈ Ik. Note that

if rk+1 = as (i. e. rk+1 is the intersection point of L with the extension of the edge (qs, qs+1) of

Qa) then for interval Ik+1, θ(x) is given by ang(qs+1 x qt), for all x ∈ Ik+1 (see Fig. 7 (b)).

Q

θ(x)

r1 Lx

ql

qh

Qa

Qb
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To find the minimum aperture angle with respect to ab, we evaluate θ(x) at the end points of
every edge in OB(P) and select the global minimum. The algorithm to compute the minimum ap-
erture angle is presented below.

Algorithm Polygon-to-Segment-Min

Input: A segment ab and a convex polygon P that does not intersect ab.

Output: A point z ∈ P for which θ(z), with respect to ab, is minimum over P.

Begin

Step 1. Determine the chain OB(P).

Step 2. For every edge e of OB(P) determine the minimum over e.

Step 3. Exit with z = zi such that θ(zj) ≥ θ(zi) for all j ≠ i.

End

Lemma 2.7: Algorithm Polygon-to-Segment-Min finds in O(n) time a point z ∈ P, such that θ(z)
is minimum with respect to the segment ab.

Proof: Step 1 can be done in O(log n) time using binary search as in lemma 2.5 [CD87]. By cor-

ollary 2.2, for every edge e of OB(P) determining the minimum over e takes O(1) time. Thus,

the global minimum over P can be found in O(n) time. Q.E.D.

The Line-to-Polygon Problem

We now take a final step towards the general problem and consider a simplification we refer

to as the Line-to-Polygon Problem, where the object that must be kept in the field of view is a con-

vex polygon Q, but the region where the camera is allowed to roam is a line L.

Problem: Given a convex polygon Q and a line L, find a point x ∈ L such that the aperture angle
θ(x) is a maximum.

To simplify the notation, assume that no edge of Q is parallel to the line L. Also assume that

the polygon and the line do not intersect. Without loss of generality assume L is the x-axis, and let

qh be the vertex of Q with the highest y coordinate and ql be the vertex with the lowest y coordinate.

Thus the boundary of Q is decomposed into two chains: a left chain Qa = {qh, qh+1,..., ql} and a

right chain Qb = {ql, ql+1,..., qh}. We partition L by extending every edge of Qa until it intersects

L at a point ai and every edge of Qb until it intersects L at a point bj. Finally we merge the ordered

sets A = {a1, a2,..., al-h} and B = {b1, b2,..., bn-l} (subindex addition is done modulo n) to obtain an

ordered set R = {r1, r2,..., rn}. The partition of L consists of the intervals Ik = [rk , rk+1] k = 1, 2,...,

n-1 together with two unbounded intervals I0 = (-∞, r1] and In = [rn , +∞).



- 10 -

Let the common tangents of P and ab be tangents at {a, pr} and {b, ps} respectively (see Fig.

6). If the common tangents are colinear with edges of P then let pr and ps be the end points of these

edges that are furthest from a and b, respectively. We assume that L(a, b) does not intersect int(P),

since otherwise the minimum aperture angle is determined by any point the intersection of P and

L(a, b). Define the outer boundary of P with respect to segment ab, denoted by OB(P), as the in-

tersection of P with the boundary of the convex hull of P union ab. Thus the end points of OB(P)

are pr and ps. Note that pr and ps may coincide.

Lemma 2.6: Any point x in P where the aperture angle reaches the minimum value lies on a ver-
tex of the chain OB(P).

Proof: (by contradiction) Let us assume that x is a point where the minimum is attained and such

that it is not contained in OB(P). Let θ(x) = ang(a x b) and refer to Fig. 6. Consider the cone(x)

that defines the aperture angle θ(x). The lines L(x, a) and L(x, b) partition the plane into four

wedges. Two wedges that share only a point are called opposite wedges. The union of two

opposite wedges is called a double wedge. Let W denote the wedge that does not contain ab

but is part of the double wedge that contains ab. By construction, the intersection of int(W)

and OB(P) exists. Let y be a point in this intersection and translate cone(x) so that x coincides

with y. The new (translated) cone has an angle at y equal to what it had at x and it contains

ab in its interior. However, the bounding rays are no longer tangent to ab and can be rotated

in the directions of the end points of ab in order to become tangent. Therefore θ(y) < θ(x), a

contradiction. This establishes that the solution lies on OB(P). That it must also lie on a vertex

of OB(P) follows from corollary 2.2. Q.E.D.

Fig. 6

a b

OB(P)

x

y

P

pr

ps
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                    An algorithm to find the maximum aperture angle follows directly from the above

discussion and is presented below. We assume in this paper that the vertices of the polygons are

stored in arrays.

Algorithm Polygon-to-Segment-Max

Input: A convex polygon P with n vertices and a segment ab such that L(a, b) does not inter-

sect P.

Output: A point x ∈ P for which θ(x), with respect to ab, is a maximum over P.

Begin

Step 1.- Compute the chain IB(P).

Step 2.- Determine the point x, where the circle C through a and b is tangent to P, by

using binary search over IB(P).

Step 3.- Exit with x.

End

Lemma 2.5: Algorithm Polygon-to-Segment-Max finds in O(log n) time a point x ∈ P, such that
θ(x) is a maximum with respect to the segment ab.

Proof: Step 1 can be done in O(log n) time using binary search, since the slope of a line segment

connecting a point outside a convex polygon to a point that travels along the boundary of the

polygon, defines a bimodal function [CD87]. Consider an edge [pi, pi+1] in IB(P) and the line

L(pi, pi+1). Let z be the point on L(pi, pi+1) that realizes the maximum aperture angle for seg-

ment ab. From lemma 2.4 it follows that the solution for P lies in [pi, pi+1] if z lies in [pi, pi+1],

if z lies on ray(pi+1, pi) beyond pi then the solution for P lies on the sub-chain of IB(P) clock-

wise of pi, and if z lies on ray(pi, pi+1) beyond pi+1 then the solution lies on the sub-chain of

IB(P) counter-clockwise of pi+1.Therefore we may use binary search on IB(P) to find the so-

lution segment of P where the aperture angle is a maximum. Once this solution segment is

identified, the circle through ab and tangent to the solution segment can be found in constant

time. Therefore the complexity of step 2 is bounded by O(log n). Q.E.D.

We now turn our attention to the minimization version of the Polygon-to-Segment problem.

Before presenting a characterization of the solution to this problem, we first define some additional

geometric concepts.

Definition: A line L is a common tangent of P and ab if: (1) it is tangent to P and ab, and (2) it
leaves P and ab in one of the closed halfplanes defined by L.
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spect to ab is the aperture angle over the interval I = [pi, pi+1] ⊂ L(pi, pi+1) with respect to

ab. Note also that L(pi, pi+1) does not intersect ab. Assume without loss of generality that seg-

ment ab lies above L(pi, pi+1), that the intersection point t between L(a, b) and L(pi, pi+1) is

to the left (in the sense of smaller ordinate) of the interval I, and that a lies between b and t.

If the intersection point is to the right of I the argument is symmetric. We assume the config-

uration has been rotated so that no edge of the polygon is vertical. (refer to Figs. 5a and 5b

for illustrations).

Since the edge (pi, pi+1) is in IB(P), the line L(pi, pi+1) intersects the circle C at two points z1

and z2, such that z1 ≠ z2 and both points lie outside I. When traversing the circle C in coun-

terclockwise direction from point a, we define the order as a, z1, z2, b. Thus, there are two

possible arrangements of points over L(pi, pi+1). One of them is (t, pi+1, pi, z1, z2) which oc-

curs if [pi, pi+1] is more counter-clockwise of x on IB(P) (refer to Fig. 5.a). The other order

is (t, z1, z2, pi+1, pi) which occurs when [pi, pi+1] is more clockwise of x on IB(P) (refer to

Fig. 5.b).

The maximum aperture angle from L(pi, pi+1) with respect to segment ab must occur at a

point y ∈ [z1, z2] since any point outside C that is on the interval (t, ∞) of L(pi, pi+1), has a

smaller aperture angle than z1 and z2, by observation 2.1. Since [z1, z2] ⊄I, we have y ∉ I.

Therefore, by lemma 2.1 if the sequence of points on L(pi, pi+1) is (t, pi+1, pi, z1, z2) then the

function θ(x) is strictly increasing over I, and if the sequence is (t, z1, z2, pi+1, pi) then function

θ(x) is strictly decreasing over I. Thus if the maximum aperture angle occurs at a vertex, the

lemma holds. If, however, the maximum occurs at a point x in the interior of an edge (pk-1,pk),

we have not yet established that the function is unimodal on that interval. But, in this case the

unimodality follows from lemma 2.1. Q.E.D.

pi+1

pi

z2

z1
t

a

b

P

z2

z1

pi
pi+1 P

a

b

t

x x

L(pi, pi+1)

L(a, b)

L(pi, pi+1)

L(a, b)

                            Fig. 5 (a)                                                                    Fig. 5 (b)
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The initial problem is now reduced to that of finding a point x ∈ IB(P) such that θ(x) is a max-

imum with respect to ab. The following result shows that the function θ(x) has a unique maximum

point.

Lemma 2.3: The maximum aperture angle is reached at a unique point x ∈ IB(P).

Proof: Consider the infinite radius circle through ab that does not contain P. Consider the con-

tinuous transformation of this circle as its center travels along the perpendicular bisector of

segment ab. By lemma 2.1 the maximum aperture angle is reached at the point where the cir-

cle first touches P. But a circle tangent to a convex polygon intersects the polygon at a unique

point. Q.E.D.

Lemmas 2.2 and 2.3 establish the existence of a unique global maximum over IB(P). How-

ever, this in itself does not preclude the existence of other possible local maxima. Fortunately, we

are able to show that θ(x) is an upwards unimodal function over IB(P), a crucial property that we

will exploit subsequently for obtaining efficient algorithms.

Lemma 2.4: The function θ(x) with respect to the segment ab is upwards unimodal over IB(P).

Proof: Let C be the circle that contains a and b, tangent to P and let x be the point at which tan-

gency occurs. The point x, where the maximum aperture angle is reached, can lie in the inte-

rior of an edge or on a vertex of the polygon P, but by lemma 2.2 it must lie in IB(P). For

every edge (pi, pi+1) ∈ IB(P) that does not contain x in its interior let L(pi, pi+1) be the line

passing through (pi, pi+1). Notice that the aperture angle defined over edge (pi, pi+1) with re-

a b

x

yIB(P)

P

Fig. 4

cd

ray(d, b)
ray(c, a)
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as min {d(a, x) | x ∈ P} and d is the euclidean distance). Thus, L(a, b) divides the convex polygon

P into two convex polygons P1 and P2, where L(a, b) does not intersect the interior of either and

IB(P) is partitioned into IB(P1) and IB(P2). Furthermore, the solution to our problem for P will be

the maximum of the two solutions obtained for the two problems on P1 and P2 separately since on

L(a, b) the maximum aperture angle is zero. Therefore, to solve the Polygon-to-Segment problem,

we may assume that L(a, b) does not intersect int(P).

Fig. 3

Lemma 2.2: A point x ∈ P where the aperture angle reaches the maximum value lies on the chain
IB(P).

Proof: (by contradiction) Let x be the point that maximizes the aperture angle and let it not be

contained in IB(P). Let the supporting rays from x be denoted by ray(x, a) and ray(x, b), let

cone(x) denote the unbounded region of the plane determined by ray(x, a) and ray(x, b) that

contains segment ab, and refer to Figure 4. It suffices to demonstrate that IB(P) intersects

int(cone(x)), for then triangle abx must contain a point y of IB(P) in its interior for which θ(y)

> θ(x), a contradiction. Therefore assume IB(P) does not intersect int(cone(x)). Let c and d

be the end points of IB(P) such that d lies on the critical separating tangent through end point

b of segment ab and c lies on the critical separating tangent through end point a of segment

ab. Let ray(d, b) denote the ray starting at d in a direction away from b and let ray(c, a) denote

the ray starting at c in direction away from a. Since IB(P) does not intersect int(cone(x)), the

cone(x) can intersect at most one of ray(d, b), ray(c, a). Without loss of generality, assume

cone(x) intersects ray(d, b). This implies that point b lies in ext(cone(x)), a contradiction.

Q.E.D.

P

a b

pj
pi

pr

ps

IB(P)
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Lemma 2.1 can also be established forx ∈ [t,+∞) in a similar way.

The following corollaries are immediate consequences of lemma 2.1.

Corollary 2.1: Let I be a closed interval contained inL and lety andy’ be the points where the two

circles througha andb are tangent toL. The maximum aperture angle, overI, with respect toab is

reached at eithery or y’ or at an end point ofI.

Corollary 2.2: Let I be a closed interval contained inL that does not contain pointt. Then the min-

imum aperture angle, overI, with respect toab is reached at an end point ofI.

We now take a step closer to the general problem and consider a simplification we refer to as

thePolygon-to-Segment Problem, where the object that must be kept in the field of view is still a

segmentab but the region where the camera is allowed to roam is a convex polygonP.

The Polygon-to-Segment Problem

Problem: Find a pointx in a convex polygonP such thatθ(x) is a maximum with respect to a given

segmentab that does not intersectP.

In order to present the solution to this problem, we first define some geometric concepts re-

lated to the solution. Unless stated otherwise, we assume throughout the paper that the vertices of

the polygon are given in counterclockwise order (refer to Figure 3).

Definition: A line L is acritical separating line of support of P andab if it (1) separatesP from
ab, and (2) it is tangent to bothP andab.

Let the critical separating lines of support ofP andab be tangent at {pj, a} and {pi, b} respec-

tively (see Fig. 3). If these lines are colinear with edges ofP, then letpj andpi be the end points of

these edges that are furthest froma andb, respectively. These lines partition the boundary ofP into

two chains. They also partition the plane into four regions (or cones), two of which are empty, one

of which containsP and the otherab. Denote the region containingP byRP. Now, the line segment

pipj partitionsRP into a triangle and an unbounded region. The chain (pi, pi+1,..., pj) contained in

the triangle (possibly consisting of a single vertex) is referred to as theinner boundary of P with

respect to ab, and is denoted byIB(P). The complementary chain is denoted byIB(P)c. Note that

pi andpj are assumed to be contained in bothIB(P) and the complementIB(P)c.

Let int(P), ext(P) andbd(P) denote the interior, exterior and boundary, respectively, of poly-

gon P. If lineL(a, b) passing throughab intersectsint(P), the chainIB(P) is contained in the trian-

gle (pi, c, pj), wherepi and pj are the two tangent points as defined above andc is the extreme point

of the segmentab that is closer toP (using the definition of distance from a pointa to a polygonP
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of the line containing the segment ab and the line L. Observe that the minimization problem is triv-

ial since the aperture angle of t with respect to ab is zero. The point where the aperture angle is a

maximum, however, lies in either of the open sets (-∞, t) or (t, ∞). Let θ(x) denote the aperture-

angle function (i.e. the aperture angle from a point x on L, the real line, with respect to a given line

segment ab, as x varies from -∞ to +∞).

Lemma 2.1: If x is constrained to the interval (-∞, t], then the function θ(x) reaches its maximum
at the point y ∈ (-∞, t] where the circle through a, b and y is tangent to L. Furthermore, θ(x) is up-
wards unimodal in (-∞, t].

Proof: Let C be the circle through a and b that is tangent to L at a point y ∈(-∞, t]. For all points

x ∈(-∞, t] with x ≠ y, θ(y) > θ(x) by Observation 2.1. Thus, we have established that y yields

a maximum. We will now show that the function θ(x) is upwards unimodal. We consider two

cases depending on whether or not the center of C lies on the same side of the line through

ab as y.

Case 1: The center of C lies on the same side of ab as y. Let x1, x2 ∈(-∞, t] with the property

that x1 < x2 < y and refer to Fig. 2. Since the circle C is tangent to L at y, when C is enlarged

continuously with the constraint that it pass through a and b, the growing circle first intersects

x2 and subsequently x1. Therefore the circle through a, b and x2 is smaller than the circle

through a, b and x1. But since the chord ab is the same length in both circles, the angle it in-

duces is smaller in the larger circle. Therefore θ(x1) < θ(x2).

Case 2: The center of C lies on the side of ab not containing y. A similar argument holds

where the circle first shrinks continuously until ab defines its diameter, after which it grows

continuously. It follows that θ(x) is strictly increasing in (-∞, y]. Similar arguments show that

θ(x) is strictly decreasing in [y, t]. Therefore θ(x) is upwards unimodal in the interval (-∞, t].

Q.E.D.

a

b

x1 y t
L

C

x2

Fig. 2
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2.   Geometric Preliminaries

In this section, we develop some geometric tools and solve several special cases of the gen-

eral problems that will be used subsequently to solve the general problems. The model of compu-

tation used for the algorithms is the extended real RAM (for details refer to [PS88]). We begin with

a few basic observations from Euclidean geometry. Leta, b andx be points on a circleC. Let y be

a point in the open halfplane (defined by the line througha andb) that containsx. Let ang(abc)

denote the angle atb in triangleabc.

Observation 2.1: If y lies in the exterior of circleC thenang(ayb) < ang(axb) (refer to Fig. 1 (a))

Observation 2.2: If y lies on the circle C thenang(ayb) = ang(axb) (refer to Fig. 1 (b))

Observation 2.3: If y lies in the interior of circleC thenang(ayb) > ang(axb) (refer to Fig. 1 (c))

The first simplification of the general problems will be referred to as theLine-to-Segment

Problem, where the convex polygonQ (the object that must be kept in the field of view) is replaced

by a segmentab and the convex polygonP (the region where the camera is allowed to roam) is

replaced by a lineL. Note that this is precisely the “picture-on-the-wall” problem for which a so-

lution is known [Ni81], [VG80]. These authors however only give characterizations of the solu-

tion. On the other hand, motivated by the desire to obtain efficient algorithms, we will also char-

acterize the aperture-angle function itself.

The Line-to-Segment Problem

Problem: Given a segmentab and a lineL that does not intersectab, find a pointx ∈ L such that
the angleaxb is a maximum.

Without loss of generality assume the lineL is thex-axis. When the segmentab is parallel to

the lineL, the solution pointx must lie at the perpendicular projection of the midpoint ofab onL.

Thus, we can turn our attention to the case whereab is not parallel. Lett be the intersection point

a

b

y x

c

a

b

y
x

c

a

b

y

x

c

 Fig. 1 (a)  Fig. 1 (b)  Fig. 1 (c)
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of visibility investigated in computational geometry allows for a guard or camera to “see in all di-

rections,” i.e., theaperture angle is idealized to be 360 degrees. More recently, computational geo-

metry research has begun investigating more realistic models of visibility where the aperture angle

(or field-of-view angle as it is called in robotics [CDGP], [Co88]) is restricted to be some angleθ
less than 360 degrees. For example, given a convex polygon and a camera with aperture angleθ
situated outside the polygon, Teichman [Te89] computes a description of all the points in space

where a camera may be placed in such a way that the polygon lies completely in the field of vision

of a camera with aperture angleθ. A memberx of a set of pointsS is said to beθ-visible if a camera

with aperture angleθ can be placed onx in such a way that no other member ofS lies in the cam-

era’s field of vision. Avis, et al. [ABD93] obtained optimal algorithms for finding all theθ-visible

points in such a set. Devroye and Toussaint [DT93] investigate the cardinality of theθ-visible

points among a set of special points which are the intersections of a set of random lines. Finally, in

another variant of the problem Bose, et al., [BGL93] have shown thatn cameras, each with speci-

fied aperture angle not exceeding 180 degrees, can be placed atn fixed locations in the plane to see

the entire plane if and only if the aperture angles sum to at least 360 degrees.

The simplest of these types of problems is often found as a exercise in calculus texts and

called the “picture-on-the-wall” problem (see for example [Sc60], p. 427, problem # 20). In this

problem a picture hangs on the wall in a museum above the level of an observer’s eye. How far

from the wall should the observer stand to maximize the angle at the observer’s eye determined by

the top and bottom of the picture? While this problem is easily solved with calculus, an elegant

solution that does not use calculus has been known for some time [Ni81]. This same solution holds

for the more general problem where the picture may not be orthogonal to the floor [VG80].

In this paper we consider a generalization of the “picture-on-the-wall” problem, namely, the

problem of computing the aperture angle of a camera that is allowed to travel in a convex region

in the plane and is required to maintain some other convex region within its field of view at all

times. More specifically, letP andQ be two disjoint convex polygons in the plane withn andm

vertices, respectively. Given a pointx in P, theaperture angle of x with respect toQ is defined as

the angle of the cone that: (1) containsQ, (2) has apex atx, and (3) has its two rays emanating from

x tangent toQ. We present an O(n + m) time algorithm for computing theminimum aperture angle

with respect toQ whenx is allowed to vary inP. We also present algorithms with complexities O(n

log m), O(n + n log (m/n)) and O(n + m) for computing the maximum aperture angle with respect

to Q whenx is allowed to vary inP. Finally, we establish anΩ(n + n log (m/n)) time lower bound

for the maximization problem and anΩ(m + n) bound for the minimization problem thereby prov-

ing the optimality of our algorithms.
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ABSTRACT

Let P andQ be two disjoint convex polygons in the plane withm andn vertices, re-

spectively. Given a pointx in P, theaperture angle of x with respect toQ is defined

as the angle of the cone that: (1) containsQ, (2) has apex atx, and (3) has its two rays

emanating fromx tangent toQ. We present algorithms with complexities O(n log m),

O(n + n log (m/n)) and O(n + m) for computing the maximum aperture angle with

respect toQ whenx is allowed to vary inP. To compute the minimum aperture angle

we modify the latter algorithm obtaining anO(n + m) algorithm. Finally, we establish

an Ω(n + n log (m/n)) time lower bound for the maximization problem and anΩ(m

+ n) bound for the minimization problem thereby proving the optimality of our algo-

rithms.

Keywords: aperture-angle, convexity, unimodality, discrete optimization, algo-

rithms, complexity, computational geometry, robotics, visibility.

1.  Introduction

Visibility plays an important role in the manufacturing industry in such problems as accessi-

bility analysis in machining [ABP93], [Wo94], [TWG92], [CW92] and visual inspection [SR90]

as well as computer graphics, robotics, computer vision, operations research and several other dis-

ciplines of computing science and computer engineering [O’R87], [Sh92]. The traditional model
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