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stefan.langerman@ulb.ac.be

5 School of Computing, Queen’s University, Kingston, Canada. e-mail: henk@cs.queensu.ca
6 Department of Computer Science, Rutgers University, Camden, New Jersey 08102, USA.

e-mail: rsuneeta@camden.rutgers.edu
7 Department of Computer Science, Tufts University, Medford, USA. Partially supported by the National Science

Foundation, Grant No. CCF-0431027. e-mail: dls@cs.tufts.edu
8 School of Computer Science and Centre for Interdisciplinary Research in Music Media and Technology (CIRMMT),

The Schulich School of Music, McGill University, Montreal, Canada. Supported by FQRNT and NSERC. e-mail:
godfried@cs.mcgill.ca

Appears in Graphs and Combinatorics, vol. 23 (2007), supplement, Computational Geometry and Graph
Theory. The Akiyama-Chvatal Festschrift. The original publication is available at www.springerlink.com.

Abstract. Let S and T be two sets of points with total cardinality n. The minimum-cost many-to-many matching
problem matches each point in S to at least one point in T and each point in T to at least one point in S, such that
sum of the matching costs is minimized. Here we examine the special case where both S and T lie on the line and the
cost of matching s ∈ S to t ∈ T is equal to the distance between s and t. In this context, we provide an algorithm that
determines a minimum-cost many-to-many matching in O(n log n) time, improving the previous best time complexity
of O(n2) for the same problem.

1. Introduction

Consider two finite sets of points S and T with total cardinality n. The problem of establishing a correspon-
dence between the points in S and the points in T arises in various applications in computational biology [1],
operations research [2], pattern recognition [3], computer vision [8], music information retrieval [20] and com-
putational music theory [21]. One method of defining and measuring such a relationship uses the concept of
matching. A matching between two sets is a function that pairs individual points in one set with individual
points in the other. A one-to-one matching between S and T is a perfect matching between the two sets [13].
A many-to-one matching maps each element of S to exactly one element of T and each element of T to
at least one element of S [6]. A many-to-many matching between two sets maps each element of S to at

least one element of T and vice-versa [2]. The quality of a matching is measured by a cost function δ that
assigns a cost δ(s, t) to each matched pair (s, t). The cost of a matching is the sum of the costs of all matched
pairs (s, t), with s ∈ S and t ∈ T .

Our result. In this paper we discuss the special case where the sets S and T (not necessarily disjoint) lie
on the real line, and the cost δ(s, t) is defined as the distance between s and t. In this setting, we present
an O(n log n) time algorithm for the minimum-cost many-to-many matching problem, and note that this is
optimal: Ω(n log n) is a lower bound for the time complexity of such an algorithm on unsorted sets S and T ,



2 Justin Colannino et al.

by reduction from set equality. If the point sets S and T are given in sorted order, our matching algorithm
runs in optimal O(n) time, and this complexity matches the bound for the many-to-one and one-to-one
matching problems for the same special case [4,13].

Background. The problem of many-to-many matching has been first studied by Eiter and Mannila [11] in
the context of link distance, as a measure of similarity between two theories expressed in a logical language,
and represented by point sets in a metric space.

In a graph theoretic setting, the many-to-many matching problem can be reduced to the minimum-weight

bipartite edge cover problem. For a complete bipartite graph G = (S ∪ T, w, E), the minimum-weight edge
cover problem seeks to find a subset of E of minimum-weight, such that every vertex in S ∪ T is adjacent to
at least one edge.

The many-to-many matching problem has also been implicitly considered in the more general setting of
bibranchings first introduced by Schrijver [17]. Let D = (V, E) be a directed graph, and let V be partitioned
into two disjoint sets, a set S of source vertices and a set T of target vertices. A bibranching in D with respect
to S is a set of edges B ⊆ E such that:

for each v in S, B contains a directed path from v to a vertex in T , and
for each v in T , B contains a directed path from a vertex in S to v.
For the special case when D is a bipartite graph with color classes S and T , and all the edges in D are

directed from S to T , the bibranching is a bipartite edge cover.
For arbitrary weighted graphs, the many-to-many matching problem has an O(n3)-time solution. Indeed,

Eiter and Mannila [11] achieve this bound via reduction to the minimum-weight perfect matching problem in a
bipartite graph, which can be solved in O(n3) time using the Hungarian method. Keijsper and Pendavingh [14]
describe an O(|E|) time algorithm attributed to J. F. Geelen for reducing the minimum-weight bipartite edge
cover problem to the maximum-weight matching problem. They also describe a solution for the latter problem
that uses shortest path algorithms from [9] and [19], sped up with Fibonacci heaps [12]. Their algorithm runs
in time O(n′(|E| + n log n)), where n′ = min{|S|, |T |}; this time complexity is O(n3) in the worst case, thus
matching the complexity of the simpler approach of Eiter and Mannila [11]. For the one dimensional case
it was previously shown in [5], and in more detail in [7], that the many-to-many matching problem has an
O(n2) solution via reduction to the problem of finding the shortest path through a directed acyclic graph.

The new O(n log n) time algorithm proposed here is described in section 3, before which some properties
of an optimum many-to-many matching for point sets on the line are presented in section 2.

2. Properties of an Optimal Many-to-Many Matching

This section is concerned with the nature of pairings allowed in an optimal matching. Let S and T be two sets
of points on the real line, and assume without loss of generality that the point with the smallest x-coordinate
lies in S. For ease of presentation, we use the same symbol a to refer to both the point a and its x-coordinate
in the plane; therefore, an expression such as a < b (read a smaller than b) represents the fact that the
x-coordinate of a is smaller than the x-coordinate of b. Furthermore, for ease of visualization, in the figures,
we separate the points of S and T vertically.

We begin with defining a partition of S ∪ T into subsets A0, A1, A2, . . . such that all points in Ai are
smaller than all points in Ai+1 for all i, A0 is a maximal subset of consecutive points in S, A1 is a maximal
subset of consecutive points in T , A2 is a maximal subset of consecutive points in S, and so forth (see ahead
Figure 2).

Lemma 1. If b ∈ T and c ∈ S are such that b < c, then a minimum-cost many-to-many matching contains

no pairs (a, d) with a ∈ S, d ∈ T and a < b < c < d.

Proof. Suppose that the lemma is false. Let M be a minimum-cost many-to-many matching that contains
such a pair (a, d). Replace (a, d) in M by the two pairs (a, b) and (c, d): the result M′ is still a many-to-many
matching. Furthermore, M′ has a smaller cost than M, since (d−a) = (d−c)+(c−b)+(b−a) > (d−c)+(b−a)
(see Figure 1a). This contradicts our assumption that M is a minimum-cost many-to-many matching.

Corollary 1. Any matching (a, d) in a minimum-cost many-to-many matching, with a < d, satisfies a ∈ Ai

and d ∈ Ai+1, for some i ≥ 0.
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Fig. 1. Suboptimal matchings. (a) (a, d) is a suboptimal matching. (b) (a, b) and (b, d) do not both belong to an
optimal matching. (c) (a, c) and (b, d) do not both belong to an optimal matching.

Lemma 2. Let b < c be two points in S. If a and d are two points in T such that a ≤ b < c ≤ d, then a

minimum-cost many-to-many matching does not contain both of (a, b) and (b, d).

Proof. Suppose that the lemma is false. Let M be a minimum-cost many-to-many matching that contains
both (a, b) and (b, d) (see Figure 1b). Remove the pair (b, d) from M and add (c, d): the result M′ is still a
many-to-many matching. Furthermore, since (d − b) > (d − c), M′ has a smaller cost, a contradiction.

Lemma 3. Let b < c be two points in S, and a and d two points in T such that a ≤ b < c ≤ d. Then a

minimum-cost many-to-many matching does not contain both of (a, c) and (b, d).

Proof. Suppose that the lemma is false. Let M be a minimum-cost many-to-many matching that contains
both (a, c) and (b, d) (see Figure 1c). Replace (a, c) and (b, d) in M by the two other pairs (a, b) and (c, d):
the result M′ is still a many-to-many matching. Furthermore, since (b− a) + (d− c) > (d− b) + (c− a), M′

has a smaller cost, a contradiction.

Lemma 4. For each i > 0, Ai contains a point qi such that, in a minimum-cost many-to-many matching,

all points in Ai less than qi are matched to points in Ai−1 and all points in Ai greater than qi are matched

to points in Ai+1.

Proof. If Ai contains a single point, the lemma is clearly true. We now discuss the case |Ai| > 1. Assume for
contradiction that the lemma is false. First note that, if a point a ∈ Ai is paired with a point b < a, then b

must be in Ai−1 (cf. Corollary 1). Similarly, if a is paired with b > a, then b ∈ Ai+1. Thus, if the lemma does
not hold, there exist a ∈ Ai−1, b, c ∈ Ai and d ∈ Ai+1 such that a < b < c < d and both (a, c) and (b, d) are
contained in a minimum-cost many-to-many matching. But this contradicts Lemma 3.

Lemma 4 constitutes the basis of our dynamic programming approach discussed in section 3.

3. Matching Algorithm

Our dynamic programming matching algorithm seeks to determine the points qi defined in Lemma 4 quickly.
Once these points are determined, a minimum-cost matching can be easily computed, as described in Theo-
rem 1.

For any point q, let C(q) denote the cost of a minimum-cost many-to-many matching for the set of points
{p ∈ S ∪ T, with p ≤ q}.

Theorem 1. Let S, T be sets of sorted points on the line. Then a minimum-cost many-to-many matching

between S and T can be determined in linear time.

Proof. We compute C(pi) for all points pi in S ∪ T ; the computation of a matching of cost C(pi) is implicit
from the computation of C(pi). If m is the largest point in S ∪ T , then C(m) is the minimum cost of a
many-to-many matching.

For all points p ∈ A0, we define C(p) = ∞. Assume that we have computed C(p) for all points p in
A0, . . . , Aw, for some w ≥ 0. In the following we show how to compute C(p) for all points p ∈ Aw+1 in
O(|Aw | + |Aw+1|) time, which implies the theorem. First we settle some notation and definitions.
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Fig. 2. Partition of point set S ∪ T ; notation and definitions.

Let s = |Aw| and t = |Aw+1|. Let Aw = {a1, a2, . . . , as} with a1 < a2 < . . . < as. Let Aw+1 =
{b1, b2, . . . , bt} with b1 < b2 < . . . < bt. When w > 0, let a0 denote the point of Aw−1 of largest x-coordinate.
Let v be the vertical line though b1. Let ei denote the horizontal distance between ai and v. Let fi denote
the horizontal distance between v and bi. These definitions are illustrated in Figure 2 for w = 5. Note that
f1 = 0. Recall that our goal is to compute C(bi), for each bi ∈ Aw+1. We discuss five cases, depending on the
values of w, s and t.

Case 0: w = 0. Assume first that i ≤ s. In this case, a minimum cost is obtained by assigning the first s− i

elements of A0 to b1 and the remaining i elements pairwise, as depicted in Figure 3a. We compute the cost
C(bi), for all 1 ≤ i ≤ min(s, t):

C(bi) =
s∑

j=1

ej +
i∑

j=1

fi.

Assume now that i > s. In this case, C(bi) is minimized when the first s points in A1 are matched pairwise
with the points in A0 and the remaining (i− s) points in A1 are matched to as, as depicted in Figure 3b. So
the value C(bi), for min(s, t) < i ≤ t, is:

C(bi) = (i − s)es +

s∑

j=1

ej +

i∑

j=1

fi.

b
1

a1 as-i+1 as-1 as...

b i-1

A 1A 0

... bi

...

b1

a1 a2 as
...

bs

A 1A 0

... b ib2 ...

(a) (b)

Fig. 3. Case 0: w = 0. (a) 1 ≤ i ≤ s. (b) s < i ≤ t.

Case 1: w > 0, s = t = 1. Lemma 4 implies that b1 must be paired with a1 (see Figure 4a). Consequently,
the pair (a1, a0) accounted for in computing C(a1) should not be accounted for in computing C(b1), unless
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used to cover a0. We identify two cases: (i) a1 is paired with both b1 and a0 (and possibly other points in
Aw−1), and (ii) a1 is paired with only b1. In the first case, C(b1) includes C(a1); in the second case, C(b1)
includes C(a0). We choose the matching of minimum cost:

C(b1) = e1 + min (C(a0), C(a1)).

b1

a1 A w+1A w

a0 b1

a1 A w+1A w

bib2 ...a0 b1

a1

A w+1A wa0

as
... ai-1

...ai

(a) (b) (c)

Fig. 4. (a) Case 1: w > 0, s = t = 1. (b) Case 2: w > 0, s = 1, t > 1. (c) Case 3: w > 0, s > 1, t = 1.

Case 2: w > 0, s = 1, t > 1. This case is similar to Case 1, the only difference being that all points in Aw+1

are assigned to a1, as depicted in Figure 4b. As before, a1 may be assigned to other points in Aw−1, in which
case C(b1) includes C(a1); otherwise, C(b1) includes C(a0). Therefore, for all 1 ≤ i ≤ t, we compute:

C(bi) =
i∑

j=1

fj + ie1 + min (C(a0), C(a1)).

Case 3: w > 0, s > 1, t = 1. According to Lemma 4, we need to find the point q in Aw such that all points
less then q are matched to points in Aw−1 and all points greater than q are matched to points in Aw+1. Refer
to Figure 4c. This is the point ai that minimizes the quantity on the right hand side of the equation:

C(b1) =
s

min
i=1

(

s∑

j=i

ej + C(ai−1)).

A matching of cost C(b1) would include all pairs (aj , b1), for all j ≥ i, along with all pairs corresponding to
C(ai−1), as depicted in Figure 4c.

Case 4: w > 0, s > 1, t > 1. Let Si =
∑s

j=i ej + C(ai−1) for i = 1, 2, . . . , s. Here Si represents the cost of
connecting points ai, ai+1, . . . , as to line v, plus the cost C(ai−1). Let Mi = min{Sj | 1 ≤ j ≤ i}. In other
words, for a fixed i, Mi represents the smallest of S1, S2, . . . , Si. Again, we are looking for a point q in Aw

that splits the matching to the left and right. To this end, for 1 ≤ i ≤ min(s, t) we now compute three values:

X(bi) = Ms−i +

i∑

j=1

fj , 1 ≤ i < s,

Y (bi) =
s∑

j=s−i+1

ej +
i∑

j=1

fj + C(ai−1), 1 ≤ i ≤ s,

and

Z(bi) =
s

min
j=s−i+2

(

s∑

h=j

eh +

i∑

j=1

fj + (i + j − s − 1)es + C(aj−1)), 1 < i.

The quantities X , Y and Z above represent the following costs: X(bi) represents the cost of connecting
b1, b2, . . . , bi to at least i + 1 points in Aw, as depicted in Figure 5a; Y (bi) represents the cost of connecting
b1, b2, . . . , bi to exactly i points in Aw, as depicted in Figure 5b; and Z(bi) represents the cost of connecting
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Fig. 5. Case 4: w > 0, s > 1, t > 1. (a) Computing X(bi). (b) Computing Y (bi). (c) Computing Z(bi).

b1, b2, . . . , bi to fewer than i points in Aw, as depicted in Figure 5c. So C(bi) is the minimum of X(bi), Y (bi)
and Z(bi).

It is not hard to see that the values X(bi) and Y (bi) can be computed in O(s + t) time. Also note that

Z(bi) = es + fi + min(Y (bi−1), Z(bi−1)),

and therefore we can also compute Z(bi) for all 1 ≤ i ≤ min(s, t), in O(s+t) time. Finally, for min(s, t) < i ≤ t

we have

C(bi) = C(bi−1) + es + fi,

and so we can compute C(bi) for all 1 ≤ i ≤ t, in O(s + t) time.

Figure 6 shows the minimum-cost many-to-many matching produced by this algorithm on 20 points.

S

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T

Fig. 6. Minimum-cost matching for a complete example: |S| = 8, |T | = 12, minimum many-to-many matching cost
is 16.
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4. Concluding Remarks

The many-to-many matching problem considered here was motivated by the one-dimensional problem con-
cerned with musical rhythm in which the dimension is time [20], [21]. In the more general setting of melody
matching, however, the problem may be viewed as two-dimensional, where the x-axis measures time, and the
y-axis measures pitch. Thus the onsets of the notes in a melody may be represented as a point set in two
dimensions. Empirical studies in music perception have shown that the L1 metric works well in this context
for measuring the distance between two points in the time-pitch plane [18], [15]. Generalizing our work to this
two-dimensional version of the problem remains open. It is expected that since the complexity of the classic
matching problems may be reduced by exploiting geometric information [22], [16], [10], a similar behavior
will be observed with the many-to-many problem in two dimensions.
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