
On Flat-State Connectivity of Chains with Fixed Acute Angles∗

Greg Aloupis, Erik D. Demaine, Henk Meijer,
Joseph O’Rourke, Ileana Streinu, Godfried Toussaint

Abstract

We prove that two classes of fixed-angle, open chains with

acute angles are “flat-state connected.” A chain is flat-

state connected if it can be reconfigured between any two of

its planar realizations without self-crossing. In a compan-

ion paper (under preparation) [ADD+], several fixed-angle

linkages will be proved flat-state connected or disconnected.

In particular, all orthogonal or obtuse-angle open chains are

flat-state connected. But it remains open whether this holds

for acute-angle open chains. In this paper, we prove that

two classes of such chains are indeed flat-state connected:

those with equal acute angles, and those with equal edge

lengths and angles in (60◦, 90◦]. We claim, but do not prove,

an extension of the latter result to the range [45◦, 90◦] with-

out length restriction.

1 Introduction

The focus of this paper is fixed-angle polygonal chains,
those which maintain a fixed angle between each pair
of incident edges, in addition to fixed edge lengths.
These chains are natural models of protein backbones,
and consequently are of considerable interest in poly-
mer physics. Here we continue the study [ADD+],
but specialized to open chains. A fixed-angle chain is
determined by its fixed sequence of edge lengths and
angles between adjacent edges. A realization C of a
chain is specified by the position of its n + 1 vertices:
v0, v1, . . . , vn. A flat state of a chain is an embedding
of it into a plane without self-intersection. The ques-
tion we seek to answer is this: Is there a motion that
reconfigures a chain between any two of its flat states?
The motion passes through nonflat configurations in R3

intermediate between the two flat states, and should
avoid self-crossing and maintain the fixed lengths and
angles throughout. If a chain satisfies this property, we
say it is flat-state connected. As mentioned in the ab-
stract, it is known that all orthogonal or obtuse-angle
open chains are flat-state connected, but the question
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is unresolved for acute-angle chains. We prove this for
two classes of such chains. In both cases, the proof pro-
ceeds by reconfiguring the chains into a canonical form.
Once we know any flat state can reach this canonical
form, we know two flat states are connected via this
form.
The motions that maintain fixed angles are called

dihedral motions, terminology borrowed from bio-
chemistry, because they can be “factored” into edge
spins [ST00], each about an interior edge ei that alters
the “dihedral angle” between the planes determined by
ei and the adjacent edges ei−1 and ei+1.

2 Equal Acute Angles

Let C = (v0, v1, . . . , vn) be an open chain with links or
edges ei = (vi−1, vi), i = 1, . . . , n; thus the vector along
the ith link is vi − vi−1. Let the fixed angle between
each two consecutive edges be 2α, with α ≤ 45◦. The
canonical form of the chain is the zig-zag embedding
in which each ei−1 and ei+1 lie on opposite sides of ei.
This embedding is monotone, and clearly avoids self-
intersection. We will show that if C is embedded in the
xy-plane, we can reconfigure it via dihedral motions
into its canonical form in a plane P parallel to the z-
axis; we call all such planes vertical.
One algorithm in [ADD+] for orthogonal and ob-

tuse open chains is similar but simpler. Each link is
picked up one at a time into P , which rotates to acco-
modate the picking up but remains at all times verti-
cal. That algorithm is simple because it is easy to keep
the chain in the positive z > 0 halfspace at all times,
thus avoiding collision with the portion not yet lifted.
For acute-angled chains, this is no longer so straightfor-
ward. Nevertheless, the overall design of our algorithm
is the same, with two differences. Let C be the portion
of the chain in the xy-plane, and C ′ the portion already
lifted into P . First, the canonical form in P is at all
times tilted so that any line containing an edge of C ′

makes an angle α with the xy-plane. Second, the lifting
move is less straightforward.
After iteration i of the algorithm, the following in-

variants have been established:

• C = (ei+1, . . . , en) remains unmoved in the xy-
plane.



• C ′ = (e1, . . . , ei) is canonically embedded in P .

• P is vertical.

• C ′ lies in the z > 0 half space, except for its end-
point vi.

• Each edge ei of C
′ makes an angle of α with the

xy-plane.

We choose to illustrate the algorithm for orthogonal
chains, 2α = 90◦ (for which, as mentioned, there is a
simpler algorithm). The issues are the same, and it is
perhaps easier to understand the lifting move in this
case. Fig. 1 illustrates the invariant situation for an
orthogonal chain after step i. Step i+ 1 lifts edge ei+1
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Figure 1: After step i. Note that each edge in P forms
an angle of α = 45◦ with the xy-plane.

to a plane P ′, as illustrated in Fig. 2. It is clear that
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Figure 2: After step i+ 1.

all the invariants have been reestablished. The only
difficult part is showing that the lifting of ei+1 and the
twisting of P to P ′, can be accomplished by dihedral
motions, i.e., without altering the fixed angles at the
joints.
The rotation of vi about ei+2 to v

′
i (see Fig. 2) clearly

maintains the fixed angle 2α at vi+1: we simply rotate

ei+1 along the cone of angle 2α, whose axis is ei+2 and
apex vi+1. This cone, which will play a role below, rep-
resents all the positions of ei+1 that maintain the fixed
angle at vi+1. For the illustrated case, 2α = 90

◦, this
cone is in fact a disk perpendicular to ei+2. This rota-
tion is continued until ei+1 forms the angle α with the
xy-plane. The chain C ′ from e1 to ei−1 moves rigidly
in R3, so its angles remain fixed. It only remains to ar-
gue that the moves can be made in such a way that the
angles at vi−1 and vi remain fixed, and that at all times
the edges of C ′ make an angle α with the xy-plane.

Consider this last requirement. We spin P about a
vertical line L through vi. To accomplish this, we spin
ei = (vi−1, vi) about this vertical line, keeping its angle
with the vertical fixed at π/2 − α, and therefore its
angle with the xy-plane fixed at α. This has ei moving
on a cone V whose axis is L and whose apex is vi. See
Fig. 3. In order to maintain an angle of 2α at vi, ei

must simultaneously move on another cone W , this of
angle 2α, centered on ei+1 with apex vi. Therefore,
ei should lie along the line of intersection of these two
cones, both of whose apex is vi. When it does, the plane
P is determined, and the angle at vi−1 is retained at
2α, as illustrated in Fig. 3. It only remains to argue
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Figure 3: Intermediate between steps i and i+1. Edge
ei moves on two cones, one, V , of angle π/2−α = 45◦,
and one, W , of angle 2α = 90◦.

that the two cones V and W indeed intersect.

The movement of V is easy to understand: it merely
translates in R3, attached to its apex vi. W , how-
ever, rotates in space as its axis ei+1 rotates. Let B
be interval of angles that rays in W make with the
line L. B starts at [π/2 − 2α, π/2 + 2α] when ei+1

is in the xy-plane ([0◦, 180◦] in Fig. 1), and ends at
[π/2−α, π/2+3α] when ei+1 forms an angle of α with
the xy-plane ([45◦, 225◦] in Fig. 2). Throughout, |B|
spans 4α, the angle of W about ei+1. In between the
smallest angle β of B changes monotonically, because
ei+1 is lifting its angle with the xy-plane monotonically
as it rotates about ei+2. Therefore, throughout the lift-
ing move, β ∈ [π/2 − 2α, π/2 − α]. Recalling that the



angle of V with respect to L is π/2− α, we see that at
all times V ∩W 6= ∅; the two cones become tangent at
the end of the motion. Therefore, a motion that keeps
the angle at vi fixed while maintaining the invariants is
possible. We have proved

Theorem 2.1 Any two flat states of an open chain
with fixed, equal angles 0 < 2α ≤ 90◦ are connected
by a dihedral motion.

3 Unit-Length Chains with

Angles in (60◦, 90◦]

In this section we prove that unit-length chains with
angles in the range (60◦, 90◦] are flat-state connected.
Our algorithm may also be used for linkages with nona-
cute angles.
Let the angles of a chain C = (v0, v1, . . . , vn) be

α1, α2, . . . , αn−1, as shown in Fig. 4.
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Figure 4: Two flat states of a unit-length chain with
nonobtuse angles greater than 60◦.

3.1 The Canonical Configuration

We say that an angle αi is a left (right) turn if vi+1 is to
the left (right) of −−−→vi−1vi; we abbreviate the turns as L
and R when convenient. The canonical configuration is
again embedded in a vertical plane, orthogonal to the
chain C in the xy-plane. But, unlike in the previous
section, the turns do not necessarily alternate left-right.
Let e1 be placed horizontally. There are two choices

for placing any given edge ei with angle αi. Our choice
for placing edge ei with a left or right turn will be
based on the height (z-coordinate) of the new endpoint
(vi) of this intermediate chain. We choose to place
each new edge so that the new endpoint is at a maxi-
mum height—a greedy approach. Fig. 5 shows how we
would build the canonical configuration of the linkage
in Fig. 4, with the height of each vertex vi labeled zi.

Lemma 3.1 In the canonical configuration of a chain,
the height of even vertices increases monotonically, and
similarly for odd vertices.
Proof: Omitted in this version. The restriction of the
angle to (60◦, 90◦] is crucial here. 2
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Figure 5: A canonical configuration in the vertical
plane P .

We see from Lemma 3.1 that whenever zk−1 > zk

and αk−1 is a left (right) turn, then αk must be a right
(left) turn. Furthermore zk+1 > zk−1.
We wish to prove that a linkage in canonical form

must be non-self-intersecting. We use the following
facts:

1. Three consecutive edges cannot self-intersect.

2. Five consecutive edges with the turn sequence
(L,R,R,L) cannot self-intersect.

3. Four consecutive edges cannot self-intersect unless
all turns are L or all R.

These facts lead to a proof of the following lemma,
whose proof is omitted.

Lemma 3.2 A chain in canonical form must be non-
self-intersecting.

Note that the canonical form is unique if none of its
edges point directly upward. If an edge points upward,
the subchain above it may be placed in two positions
that satisfy the canonical criteria. In order to create a
unique canonical configuration we may choose to form
right turns after vertical edges. Even if we do not have
such a rule, it is clear that different versions of the
canonical form are flat-state connected.

3.2 Reconfiguring to Canonical Form

C lies in the xy-plane. We now describe how to recon-
figure it into its canonical form in the vertical plane. We
begin by lifting e1 so that it projects vertically onto e2.
Now suppose that we have part of the chain C still in
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Figure 6: A chain partially in canonical form.

the original configuration, and part of it, C ′, embedded
in the vertical plane P in canonical form, as in Fig. 6.
We want to move C ′ into a position above the next

edge ei+1 of C, as illustrated in Fig. 7. The edge ei

common to both planes will be lifted so that C ′ will
project down to the line through the next horizontal
edge ei+1.
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Figure 7: Lifting edge ei into canonical form.

We perform two simultaneous dihedral motions dur-
ing this operation. Edges that are already in canoni-
cal configuration remain coplanar (in a vertical plane)
throughout these motions. We rotate ei about ei+1, on
the cone of angle αi with axis ei+1, and at the same
time we rotate the canonical plane accordingly, so that
it always projects vertically through ei. We call these
two dihedral motions primary.
During these motions, we wish to maintain the prop-

erties of the canonical chain. We need to intervene
only if an edge ek points directly upward during the
primary motion. At this instant, the chain Ck above
ek may be placed arbitrarily in either of two possible
positions in the canonical plane. If the overall motion
were to continue as is, ek and the edge above it will no
longer satisfy the greedy property. Thus we rotate Ck

about ek and proceed with the primary motion, until
another edge becomes vertical or ei reaches its target
position above ei+1.
It is best to visualize this idea from a view direction

perpendicular to the canonical plane. From this view-
point, the canonical chain appears to be rotating con-
tinuously in its plane. Fig. 8 shows a canonical chain
rotating counterclockwise in its plane. Dashed edges
show the alternative position of each edge. We see that
as the chain rotates, edges maintain their greedy po-

sitions until an edge ek becomes vertical. If the chain
continues to rotate, the property will no longer hold for
the edge above ek. Performing a dihedral rotation of
Ck about ek resolves this problem for ek.
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Figure 8: When ek becomes vertical, the chain above
rotates to maintain the canonical height property.

Unfortunately, an edge e can become vertical many
times throughout the life of this algorithm; we have an
example that forces it to make an exponential number
of dihedral rotations. Although this does not affect the
main claim of connectivity for (60◦, 90◦]-chains, it does
detract from the method.
In search of alternatives, we found (too late for inclu-

sion in this abstract) a new algorithm that establishes
flat-state connectivity for any chain with angles αi such
that αi ≤ ai−1+αi+1 (the first and last angle can have
any value). In particular, this relationship is satisfied
for angles in the range [45◦, 90◦]. Not only is this an-
gle range wider, but the restriction to unit-length is no
longer needed.

4 Open Problem

The main open problem is to prove or disprove that ev-
ery open chain with acute angles is flat-state connected.
A step towards this would be resolving the question for
unit-length acute-angled chains.
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