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Abstract

Several geometric, graph theoretical and combinatorial techniques useful for the
teaching, analysis, generation and automated recognition of rhythms are proposed and
investigated. The techniques are illustrated on the six fundamental 4/4 time clave and
bell rhythm timelines most frequently used in African, Brazilian and Cuban music. It is
shown that it is possible with three simple geometric features to automatically classify
the rhythms without knowledge of their starting note. Three measures of rhythm com-
plexity are compared. Pressing’s measure agrees well with the difficulty of performing
these clave rhythms whereas the Lempel-Ziv measure appears to be useless. An analysis
of the rhythms using several similarity measures and visualization tools reveals that the
clave Son is most like all the other clave rhythms and perhaps provides an explanation
for its worldwide popularity. Finally, a combinatorial technique based on permutations
of multisets suggests a fruitful approach to automated generation of new rhythms.

1 Introduction

Imagine a clock which has 16 hours marked on its face instead of the usual 12. Let us assume
that the hour and minute hands have been broken off so that only the second-hand remains.
Furthermore assume that this clock is running fast so that the second-hand makes a full turn
in about 2 seconds. Such a clock is illustrated in Figure 1. Now set the clock ticking starting
at “noon” (16 O’clock) and let it keep running for ever. Finally let us strike a bell at 16
O’clock and at the 3, 6, 10 and 12 positions for a total of five strikes per clock cycle. These
times are marked with a bell in Figure 1.

The resulting pattern rings out a seductive rhythm which in a short span of fifty years
during the last half of the 20th century has managed to conquer the planet. It is known
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Figure 1: A clock divided into sixteen intervals of time.

around the world mostly as the Clave Son from Cuba. However, it is common in many
African rhythms and probably travelled from Africa to Cuba with the slaves [48], [49]. In
Cuba it is played with two sticks made of hard wood also called claves [39]. In Africa it is
traditionally played with an iron bell. In a section below a mathematical argument is offered
to explain the world-wide popularity of this rhythm.

The Clave Son rhythm is usually notated for musicians using standard music notation
which affords many ways of expressing a rhythm. Four examples are given in the top four lines
of Figure 2. The fourth line shows it with music notation using the smallest convenient notes
and rests. The bottom line shows a popular way of representing rhythms for percussionists
that do not read music. It is called the Box Notation Method developed by Philip Harland at
the University of California in Los Angeles in 1962 and is also known as TUBS (Time Unit Box
System). If we connect the tail to the head of this last diagram and draw it in the form of a
circle in clockwise direction we obtain the clock representation in Figure 1, where the squares
in Figure 2 filled with black dots correspond to the positions of the bells in Figure 1. The box
notation method is convenient for simple-to-notate rhythms like bell and clave patterns as
well as for experiments in the psychology of rhythm perception, where a common variant of
this method is simply to use one symbol for the strike and another for the pause [15]. Thus for
the clave son a common way to write it is simply as [x . . x. . x. .. x. x. . .|. Finally, in
physiology, where the study of cardiac rhythms [3] is important, as well as in computer science
the clave son would be written as the 16-bit binary sequence: [1 0010010001010 0 0].

Playing these five notes is more difficult than it appears at first hearing. When a Cuban
performer passionately invites the audience to participate in clapping this clave Son, the
non-musicians in the crowd invariably execute their second clap at 4 o’clock instead of 3
o’clock.

1.1 The clave patterns as time keeping metronomes?

In a classical music concert the conductor marks out the beat visually and silently with a
baton. All the members of the orchestra can see the conductor and the baton. This situation
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Figure 2: Five ways of representing the clave Son rhythm.

helps to keep all the musicians together on the beat of the music. The clave and bell patterns
used in African derived music also have a similar function of keeping all the drummers together
on the beat [7]. However, unlike the conductor with the baton, the drummers need not see
the bell player since the bell can be heard. The African metal bells and the hard wooden
claves used in Brazil and Cuba have a highly penetrating sound that can “cut” through a
score of loud drums so that all the drummers can hear it. One may ask then why the bell
patterns are not played like the simple rhythmic movements of the conductors’ baton. One
reason is that it would be too monotonous. The silence of the baton bothers no one. This
is one reason why the bell patterns are much more intricate than the simple 1-2-1-2-1-2 or
1-2-3-1-2-3 pulse of the baton. However, the main reason for their variability and complexity
is that the bell patterns are in fact the core of the rhythm. Not only do the individual
pattern notes supply anchors for the various drum parts being played, but they provide the
basic underlying feel of the piece. In the words of M. E. Nzewi [37], the role of the bell is that
of “a phrasing beacon for the other ensemble instruments which have the freedom to develop
their themes.” For this reason the clave and bell timelines are also called the heartbeat of the
rhythm [22]. Furthermore, in the choreographed dance ensembles of the Igho the bell is used
as a master instrument directing the choreography. Thus we see that these bell patterns and
the bell itself are much more than mere time-keeping metronomes.

There exist literally hundreds of such timeline patterns for bells, claves and woodblocks
used in music throughout Africa, Brazil and the Caribbean. This is not surprising when one
considers the number of combinations one can create out of five notes played in the sixteen
available positions of two bars. Add to that the patterns made with six, seven and up to
eleven notes; add to that the patterns that use four bars and in addition the 6/8 time rhythms
and we quickly obtain a combinatorial explosion. In this preliminary study however, we are
concerned only with the six fundamental five-note 4/4 time clave and bell timelines most
frequently used in African, Brazilian and Cuban music. These rhythms are known under
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Figure 3: The six fundamental 4/4 time clave and bell patterns in box notation.

many names in different countries but for the purpose of this study I will call them: Shiko,
Son, Soukous, Rumba, Bossa-Nova and Gahu. Figure 3 shows all six of them in box notation.
In the following sections a lot more will be said about these rhythms. For the moment the
most important feature to notice is that all six consist of five notes.

A glance at the box-notation representation of these bell patterns in Figure 3 reveals
several relationships between them. All six patterns have the first and fourth notes in the
same positions. All but Shiko and Rumba have the same first bar consisting of the first three
notes. Son can be converted to Shiko by advancing the second note by one time unit, Son to
Rumba by advancing the third note by one time unit, and Soukous to Son, Bossa-Nova and
Gahu by advancing the fifth note by one, two and three time units, respectively.

1.2 A geometric representation of rhythms

Consider again the standard musical notation for the clave Son illustrated in the top row in
Figure 2. Can the rhythm be played backwards starting at a suitable note so that it sounds
exactly the same? Answers to questions such as these are not immediately evident with such
a notation. The box notation at the bottom of Figure 2 allows this question to be answered
more easily. The answer is yes if we start on the third note. In other words the clave Son is
a shifted (or weak) palindrome.

An even better representation for such cyclic rhythms is obtained by starting with the



clock idea of Figure 1 and connecting consecutive note locations with edges to form a convex
polygon. Such a representation not only enhances visualization but lends itself more readily to
mathematical analysis. It has been used by Becker [2] to analyse Javanese Gamelan music,
by McLachlan [34] to analyze rhythmic structures from Indonesia and Africa using group
theory and Gestalt psychology, and by London [33] to study meter representation in general.
The six clave bell patterns are represented as convex polygons in Figure 4 and analysed in
more detail in the following section. Note that in Figure 4 the dashed lines indicate either
the base of an isoceles triangle or an axis of mirror symmetry.

2 The Six Fundamental 4/4 Time Bell Patterns
2.1 Shiko

The first bell pattern shown in Figure 3 is a common pattern found in Africa and the
Caribbean. For the purpose of this study we shall refer to it as Shiko as it is known in
Nigeria. Notating it in one bar instead of two it is [x . x x . x x .|. Note that therefore in
this notation the pattern uses eight units of time instead of sixteen. The Shiko is also played
in the Moribayasa thythm among the Malinke people of Guinea and in the Banda rhythm
used in Voudoo ceremonies in Haiti. In Cuba it is played on a wooden block in the Makuta
rhythm. These patterns are also played by starting on the second and the fourth notes. For
example, the Timini rhythm in Senegal is [x x . x x . x .] which is equivalent to starting the
Shiko on the second note. This bell pattern is also played for the Adzogbo dance of the Fon
people of Benin [7] On the other hand, the Kromanti rhythm of Surinam is [x x . x . x x .]
which is equivalent to starting the Shiko on the fourth note. In this study we consider cyclic
shifts of a rhythm as essentially the same rhythm and focus only on the most represen-
tative of such cyclic rhythms. The Shiko rhythm is also found as the first bar of several
two-bar rhythms. For example, a well known Arabic rhythm, the Wahda Kebira given by
X.xx.xx.|X.X.x.xx| contains the Shiko as its first bar. Here the symbol | sepa-
rates the two bars and since this is played on a drum, rather than bell, the capital X’s denote
low sounds and the small x’s high-pitched slaps. The Shiko variants also appear in other two-
bar rhythms. For example, The Kassa from Guinea given by [x X . X . XX . | X. X. X . X .]
has the Kromanti as its first bar. Finally we remark that starting the Shiko on the second
note is also a popular pattern found in Arabic rhythms played on a drum. Here again some
notes are low sounds whereas others are high pitched. For example the Wahda wa Noss
is given by [X x . x X .x.]. The Baladi is given by [X X .x X . x.]. The Masmudi is a
slow Baladi and the Saidi is given by [X X . X X . x .|. The time-line pattern in these three
Arabic rhythms is the same and it is only the pitch of the notes that changes from rhythm
to rhythm.

2.2 Son

The second bell pattern shown in Figure 3 is of course most well known around the world as
the clave Son. It was transported by the Son music from Cuba and later by its New York
off-spring, Salsa [44]. In both of these musics it is played on the claves. It is also played
on claves in the more traditional Cuban rhythms such as the Guaguancd, one of the three
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Figure 4: The six fundamental 4/4 time clave and bell patterns represented as convex poly-
gons inscribed in an imaginary circle.



styles of Rumba. In Africa this pattern is played most popularly on an iron bell called the
Ngongo in the Kpanlogo rhythm (pronounced panlogo), a recreational music of the Ga people
of Ghana [22]. The same pattern is played on a secondary bell in the Kassa rhythm from
Guinea. One of West Africa’s most popular modern dances, the Highlife, is also based on
this pattern [7].

In some Cuban music the two bars of the clave Son are transposed. Note that the first bar
[x . . x..x.]contains three notes whereas the second bar [. . x . x . . .| contains two notes.
For this reason the pattern [x .. x..x.|..x.x...]is also called the 3-2 clave Son.
Some Cuban music uses instead the 2-3 clave Son given by [. . x. x...|x..x..Xx.].
However, since the 2-3 clave is a cyclic shift of the 3-2 clave and the latter is the most
representative, we restrict this study to the 3-2 clave.

2.3 Rumba

The fourth pattern in Figure 3 given by [x. . x...x|..x.x...] has also travelled
through much of the world and goes mainly by its Cuban name: clave Rumba. The Rumba
is one of the most well known Afro-Cuban folkloric song-and-dance styles popular at large
feasts. There are three styles of Rumba: the 6/8 time Columbia and the two 4/4 time
rhythms, the fast Guaguanco and the slower Yambd. It is these two last rhythms that use
the clave Rumba time-line. This pattern is also used in several other Cuban rhythms such
as the Conga de Comparsa and the Mozambique, both used mainly for Carnavals. The same
time-line pattern is played on a bell in a processional music of the Ibo and Yoruba peoples of
Nigeria [22]. Like the clave Son, the Rumba clave has its 3-2 version shown above and also a
2-3 version, namely [. . x. x...|x..x...x]. Again, the 2-3 version is a cyclic shift of
the 3-2 version and in this study we restrict ourselves to the 3-2 clave Rumba in 4/4 time.

2.4 Soukous

Rhythm did not travel with the slaves along a one-way street from Africa to America. After
the Second World War Cuban music became popular in central Africa. Rumba in particular
hit a sympathetic chord with dancers and was speeded up to create what was first called
Congolese and later became Soukous. Soukous literally means “to shake” and what may
account for the strong heartbeat pulse is the time-line pattern [x . . x. . x. |..xx... ]
with its last two notes closer together. This pattern is usually played on either a wood-block
or even a snare drum. It is not surprising that Africans would resonate with a new music
that had African roots. Neither is it surprising that they would speed it up to suit their
more frenetic dances. What may seem surprising at first glance is that they would change
the rhythm itself to such an extent that the resulting time-line ended up closer to Son than
to Rumba. (To transform the Son to Soukous one merely plays the last note of the Son one
time-unit earlier. On the other hand, to transform the Rumba to Soukous one must play
both the third and fifth notes of the Rumba one time-unit earlier.) However, further analysis
reveals that even when the tempo of the Rumba is increased, the relatively late third note
slows it down subjectively. Advancing this third note by one time-unit gives it the rolling
drive of the clave Son.



2.5 Bossa-Nova

The fifth time-line pattern in Figure 3 given by [x . . x. . x. | .. x. . x. .] is known as the
Bossa-Nowva clave and is played in Bossa-Nova music, in Semba music and in Afro-Brazilian
folk music from Bahia [22]. The Bossa-Nova, an offspring of Samba, is a style of music that
was developed in the late 1950’s in Rio de Janeiro by musicians such as Joao Gilberto and
Stan Getz [26]. The Bossa-Nova clave is usually played either on claves, wood block or the
rim of a snare drum.

2.6 Gahu

Gahu is a polyrhythmic drumming music of the Fwe people of Ghana. The word Gahu means
either “money dance” or “airplane.” It appears to have been created by Yoruba speakers of
Benim and Nigeria as a “form of satirical commentary on the modernization in Africa” [32]
and first taken to Ghana in the early 1950’s. The Gahu time-line, the last pattern in Figure 3
given by [x . . x..x.|..x...x.]is played on a double bell called the Gankogui. The
first note is traditionally played on the low-pitched bell and the remaining four on the high-
pitched bell. Although objectively it is similar to the Bossa-Nova clave (only the last note of
the Bossa-Nova is played one time-unit later) subjectively it has a significantly different feel.

3 Geometric Analysis of Rhythms

3.1 Geometric measurements of cyclic rhythms

The representation of the six clave and bell patterns described above as convex polygons
illustrated in Figure 4 readily suggests a variety of discriminating geometric properties useful
for comparison, analysis and automatic classification of rhythms. Discovering such properties
by analyzing classical music notation, or even box-notation, is not self evident. For example,
it is imediately obvious from examination of Figure 4 that three timelines, namely Shiko,
Soukous and Gahu contain a right interior angle as one of the vertices in their polygons,
whereas the other three (Son, Rumba and Bossa-Nova) do not. It is equally irresistible to
notice that the former three rhythms evolved in Africa whereas the latter three in America;
Bossa-Nova in Brazil and Son and Rumba in Cuba. Does a right angle translate to a stronger
beat? Note that a right angle (90 degrees) at one vertex of the polygon implies that the
remaining four vertices all lie in one and the same semi-circle. Is the presence of the right
angle as a discriminating feature between African and American popularity of rhythms more
than mere coincidence?

We also see immediately that Shiko and Bossa-Nova are palindromes. They sound the
same played forwards or backwards. This can be seen from the mirror symmetry of the
polygons about the line (axis) through positions (0,8). On the other hand, Son is a weak
palindrome in the sense that there exists a position other than (0) from which the rhythm
sounds the same when played forwards or backwards. In this case the position is (3) since
the polygon has mirror symmetry about the line (3,11).

The number of isoceles triangles determined by adjacent edges provides another geometric
feature. Shiko, Son and Soukous have one isoceles triangle each. Note that an isoceles triangle
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Figure 5: One possible decision tree to automatically classify the six clave patterns.

indicates two equal consecutive time intervals between notes. Gahu has two isoceles triangles
and Bossa-Nova has three. The Bossa-Nova is a mazimally-even set [8]. A maximally-even
set is one in which a subset of the elements has its elements as evenly spaced as possible. The
Bossa-Nova has four inter-note intervals of length three and one of length four. In contrast
Rumba is the only rhythm with no isoceles triangles, no axis of mirror symmetry and no right
angles. Rumba is, at least geometrically speaking, quite an extraordinary rhythm indeed.

3.2 Automatic classification of rhythms

Geometric features such as those described above on the convex polygons representing the
rhythms can be used to help automatic classification and recognition of rhythms. There
are several stages in the rhythm recognition process starting from the acoustic signal [11].
A fundamental and difficult step is the detection of all the note onsets. Once these are
established a matching is sought between the rhythm to be classified and stored templates.
This matching problem is made easier if the underlying beat is also known. By beat is meant
one of a series of perceived pulses marking equal units of time [29]. However, this problem
in itself, known as beat induction, is also a difficult problem [11]. One approach to solve this
problem is to look for a match over all cyclic shifts between the unknown pattern and the
stored templates. Geometric features such as those proposed here may also help. The idea is
illustrated below with a decision tree to automatically classify the six clave patterns without
knowing where the “start” of the beat is.

The decision tree is illustrated in Figure 5. It is assumed that we have already obtained
the note onsets in cyclic order (and computed the polygon) although we do not know which
note starts the rhythm. First determine if the polygon has a 90 degree angle. If the answer
is NO then we know the rhythm is either Rumba, Son or Bossa Nova. These three can



be differentiated by computing the number of isoceles triangles contained at vertices of the
polygon: zero for Rumba, one for Son and three for Bossa Nova. If the polygon has a 90
degree angle then again we compute the number of isoceles triangles. If there are two isoceles
triangles we have found the Gahu rhythm. Otherwise, if there is only one isoceles triangle
determine if there exists an axis of symmetry. If the answer is YES we have the Shiko and
otherwise we have the Soukous. Note that none of the three measurements used depend on
knowing which is the starting note of the rhythm and all three can be very easily computed.
The first two are trivial to compute and simple algorithms for finding the axis of symmetry
are described by Peter Eades [14].

4 Measuring the Complexity of Rhythms

One natural feature useful for a variety of applications including automated recognition of
rhythms is rhythm complezrity. A great deal of attention has been devoted to measuring the
objective complexity of sequences in the field of information theory [6], [35]. However, when
dealing with rhythm one cannot restrict investigation to consider only objective phenomena.
As with visual stimuli, aural stimuli exhibit a variety of perceptual illusions. One of the
earliest observations of this kind is concerned with the perception of beat. Already in 1894 T.
L. Bolton discovered that an isochronous train of identical pulses, such as clock “tics,” elicits
in the human subject an experience of alternating strong and weak beats, a phenomenon
known as subjective rhythm [4]. To paraphrase lan Cross [10], the physicalist view of rhythm
is largely wrong.

4.1 Objective, cognitive and performance complexities

Everyone can understand the principle behind juggling three balls as well as instructions on
how to juggle them. On the other hand, picking up three balls and juggling them is another
matter. In other words we all know that perceptual or cognitive complexity is not the same
as performance complexity. It is easier to recognize something than to reproduce it. In
the same way there is no logical a priori reason why an objective mathematical measure of
complexity should agree with either cognitive or performance complexities. In this section
we discuss and compare three measures of the complexity of rhythm with respect to the six
clave rhythms considered in this paper. One of the measures is new.

4.2 The Lempel-Ziv complexity

In 1976 Lempel and Ziv [30] proposed an information-theoretic measure of the complexity
of a finite sequence in the context of data compression. Their novel approach evaluates the
complexity of a finite sequence by scanning the given sequence from left to right looking for
the shortest subsequences (words) that have not yet been seen during the scan. Every time
such a word is found it forms part of a growing vocabulary. When the scan is finished the
size of this vocabulary is the measure of complexity of the sequence. For cyclic sequences
such as the rhythms considered here it is sufficient to examine a concatenation of only two
instances of the rhythm pattern since no new subsequences will be found by examining longer

10



Clave Son
(a) 1001001000101000

(b) 10010010001010001001001000101000
(¢) 10000100010000101500010001001000101000

1 2 3 4 5 6

Figure 6: Illustrating the computation of the Lempel-Ziv complexity of the clave Son.

sequences of the rhythm. As an example consider the clave Son illustrated in Figure 6. The
rhythm in binary notation is shown in Figure 6 (a). Repeating it a second time yields the
32 bit-pattern in Figure 6 (b). Figure 6 (c) shows each new subsequence found by the scan
separated by a diamond marker and labelled with an index number underneath. For the
clave Son six new subsequences are generated by this process and therefore the Lempel-Ziv
complexity is equal to six.

This measure is relatively simple to compute [18] and it is completely objective in the
sense that it is defined purely mathematically. Therefore it has been explored as a measure
of rhythm complexity by musicologists interested in the automated recognition of rhythms.
However, preliminary experimental evaluation of the Lempel-Ziv measure compared to the
complexity perceived by human subjects yielded negative results [45]. The comparison of
this measure with the other measures of rhythm complexity discussed below, with respect
to the six clave patterns described above, confirms these results. Furthermore, looking at
the scores obtained for the six clave rhythms in Figure 7 (without even comparing to the
other measures) shows that this measure is quite defficient. There is almost no variance in
the scores: all are either 5 or 6. Also the scores do not make sense to anyone experienced in
teaching or playing these rhythms. For example Shiko is the simplest of the six rhythms, and
Gahu one of the most complex, both to recognize and to play, yet the Lempel-Ziv complexities
are 5 for both of these rhythms. It appears that information theoretic measures are not able
to capture well the human perceptual, cognitive and performance complexities of rhythms.

4.3 The cognitive complexity of rhythms

Jeff Pressing proposed a measure of the cognitive complexity of a rhythm based on psycholog-
ical principles and the syncopation present in the rhythm at different levels of pulse [40]. The
reader is referred to Pressing [40] for the theory and details on how to measure and calculate
the cognitive complexity of rhythmic patterns. The cognitive complexities of the ten 4-unit
patterns made up of one-note patterns and two-note patterns computed with Pressing’s mea-
sure are shown in Figure 8. If we take the 16-bit patterns of the clave rhythms, divide them
into four units of four bits each, and add the Pressing-complexities of the four corresponding
units we obtain values for the Pressing cognitive complexities of the six clave rhythms. For
example, the Shiko pattern consists of the concatenation of the patterns [1 00 0], [1 01 0], [0

11



Rhythm Complexity Measures

Lempel-Ziv| Pressing Metric
Shiko 5 6 2
Son 6 14.5 4
Soukous 6 15 6
Rumba 6 17 5
Bossa-Nova 5 22 6
Gahu 5 19.5 5

Figure 7: A comparison of three measures of rhythm complexity.

Cognitive Complexity
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Figure 8: The cognitive complexities of ten basic rhythm patterns according to Pressing [40].

01 0] and [1 0 0 0]. Referring to Figure 8 we obtain the complexities 0, 1, 5 and 0 for a total
of 6. On the other hand the Rumba yields a Pressing cognitive complexity of 4.5 + 7.5 + 5
+ 0 = 17. Examining the Pressing cognitive complexities of all six clave rhythms in Figure 7
reveals much more information than the Lempel-Ziv complexities. All the scores are different
and the variance is quite large ranging from 6 for the Shiko to 22 for the Bossa-Nova. The
scores are also in good agreement with teaching and performing experience. Shiko is easy,
Rumba is harder than Son, and Bossa-Nova and Gahu are the hardest of these six rhythms.

4.4 Metricity and metric complexity

The concept of meter traditionally refers to the number of pulses between more or less
regularly ocurring accents. Meter is implicit rather than being notated in classical music
notation [33]. It is a hierarchical arrangement of beats of different strengths. Based on work
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Figure 9: The metrical structure of Lerdahl and Jackendoff [31] for a time line pattern of 16
time units.

by Komar [27], Lerdahl and Jackendoff [31] proposed a construct called a metrical structure
for describing the temporal psychological organization of rhythmic patterns at all metrical
levels. Their metrical structure for the 16-time unit interval relevant to the clave and bell
patterns considered here is illustrated in Figure 9. The structure defines a function that maps
the index of the time unit to the relative strength of its metrical accent. The easiest way to
describe the function is by summing levels of beats. At the first level of metrical accent a
beat is added at every time-unit starting at unit 0. At the second level a beat is added at
every second time unit starting at unit 0. At the third level a beat is added at every fourth
time unit starting at unit 0. We continue in this fashion doubling the time interval between
time units at every level. In this way time unit 8 receives 4 beats and finally time unit 0
receives 5 beats. Thus time units 2, 6, 10, and 14 are weak beats, time units 4 and 12 are
medium strength beats, unit 8 is stronger and unit 0 is the strongest beat.

A new measure of the complexity of a rhythm can be defined based on the above concept
of meter. First define a measure of the total metric strength of a rhythm and call it metricity.
It is simply the sum of all the metrical accents of the beats present in a rhythm. For example,
the clave Son has notes at time units 0, 3, 6, 10 and 12. The metrical accents in Figure 9
corresponding to these time units are 5, 1, 2, 2 and 3, respectively. Therefore the metricity
of the clave Son according to the hierarchical arrangement of Lerdahl and Jackendoff [31]
is equal to 13. Since this metrical structure has a simple and highly structured hierarchy
exhibiting a great deal of symmetry, the metricity function defined here can be viewed as a
measure of metric simplicity. As such it is inversely proportional to what will be called metric
complexity. Note that the maximum value of the metricity for five notes in a sixteen unit
time scale cannot exceed 17, and therefore the metric complexity will be defined as 17 minus
the metricity. Therefore the metric complexity of the clave Son, for example, is 17 — 13 = 4.

Although the metrical structure defined by Lerdahl and Jackendoff is based on Western
or European music and may thus be limited in scope [28] it is nevertheless an interesting
lens through which to view African and Afro-American rhythms. However, even if this
measure has little psychological significance or even universal musical merit, at worst it is
as valid an objective mathematical measure as is the Lempel-Ziv complexity and may find
useful application as a feature extraction method for the automated classification of rhythms.
Examination of the metric complexity scores of the six clave rhythms in Figure 7 reveals that
this is nevertheless a much better measure than the Lempel-Ziv complexity. The variance is
reasonable, Shiko has the lowest score of 2, Rumba (5) has a higher score than Son (4) and

13



Hamming Distance Matrix

Shiko | Son |Soukous|Rumba| Bossa | Gahu
Shiko 0 2 4 4 4 4
Son 0 2 2 2 2
Soukous 0 4 2 2
Rumba 0 4 4
Bossa-Nova 0 2
Gahu 0

2 18 10| 14 | 18 | 14 | 14

Figure 10: The Hamming distance matrix of the six rhythms. The bottom row indicates for
each rhythm the sum of the distances it is from the other five.

Bossa-Nova is amongs the most complex with a score of 6. However, the metric complexity
measure is not as good as Pressing’s cognitive complexity. Bossa-Nova and Gahu are more
difficult to play than Soukous, for example, and the metric complexity measure ranks Soukous
as harder than Gahu.

5 Measuring the Similarity of Rhythms

At the heart of any algorithm for comparing, recognizing or classifying a rhythm lies a mea-
sure of the similarity between two rhythms. There exists a wide variety of methods for
measuring the similarity of two rhythms represented by a string of symbols. Indeed the
resulting approximate pattern matching problem is a classical problem in pattern recogni-
tion and computer science in general [12]. Traditionally similarity between two patterns is
measured by a simple template matching operation. More recently similarity has been mea-
sured with more complex functions such as the effort required to morph one pattern into
another [5].

5.1 The Hamming distance

When the two strings are binary sequences a natural measure of distance or non-similarity
between them is the Hamming distance [21] widely used in coding theory. The Hamming
distance is simply the number of places in the strings where elements do not match. For
example the Gahu and Soukous rhythms differ in the position of their last note. Therefore
there are two locations in the 16-bit binary string where a missmatch occurs and the Hamming
distance between Gahu and Soukous is equal to 2. Hence it is one of the simplest kinds of
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template matching [12]. Note that in this approach each rhythm is represented by a vector
X = (x1,x9, ..., T16) where the x; represent binary valued features of the rhythm. If a note
is played at time unit ¢ then z; = 1 and otherwise z; = 0. Thus rhythms are represented
as points in a 16-dimensional binary-valued vector space (usually called a hypercube). The
Hamming distance between two points X = (z1,s,...,216) and Y = (y1,¥2, ..., Y16) in this
space is given by:

dy(X,Y) Z;Ixi—yﬂ (1)

where |z| denotes the absolute value of . The Hamming distance matrix is shown in Fig-
ure 10. The bottom row in Figure 10 shows for each rhythm the sum of its Hamming distances
to all the other five rhythms. This is a measure of how dissimilar (according to this measure)
a rthythm is from the rest of the group. Note that according to this measure Son is the most
similar rhythm to all the others.

The Hamming distance is not very appropriate for our problem of rhythm similarity
because although it measures a missmatch, it does not measure how far the missmatch
occurs. Furthermore, if a note is moved a large distance the resulting rhythm will sound
more different than if it is moved a small distance. For example, the Hamming distance
between Gahu and Soukous is the same as that between Gahu and Bossa-Nova but clearly
the latter two are much closer to each other.

There exists a large variety of generalizations of the Hamming distance [12]. One such
generalization is the edit distance which allows for insertions and deletions of notes. A
discussion of the application of the edit-distance to the measurement of similarity in music is
given by Orpen and Huron [38]. However, in our study here all the rhythms have the same
number of notes and so this generalization is not relevant.

Some rhythm detection algorithms [36] and systems for machine recognition of music
patterns [9] use inter-onset intervals as a basis for measuring similarity. These are the intervals
of time between consecutive note onsets in a rhythm. Coyle and Shmulevich [9] represent
a music pattern by what they call a difference-of-rhythm vector. If T = (t1,ts,...,t,) is a
vector of inter-onset time intervals for the notes of a rhythm then they define the difference-of-
rhythm vector as X = (z1, %9, ..., 1), where z; = t;,1/t;. This approach is more appropriate
than the Hamming distance for measuring the similarity of rhythms. In the next subsection
the six clave rhythms are compared with respect to a feature vector defined by successive
inter-onset intervals in a slightly different way.

5.2 The interval vector distance

Consider the representation of the six clave rhythms as convex polygons in Figure 4. These
polygons immediately suggest a variety of possible shape feature vectors for characterizing
the rhythms. Concentrating on the vertices of the polygon V' = (v1,vg, v3, vy, v5) one could
take v; to be the internal angle of the ith vertex. On the other hand viewing the polygon as
a sequence of edges E = (e, €9, €3, €4, €5) one could take e; to be the length of the ith edge
of the polygon. In addition, one could use a variety of global shape features of the polygon
such as the ratio of perimeter to area, or various moments of inertia [46]. Here each rhythm
will be represented by a vector of five numbers that characterize these five intervals. More
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Interval Vector Distance Matrix

Shiko | Son |Soukous|Rumba| Bossa | Gahu
Shiko 0 141 2 2.45 2 3.16
Son 0 141 141 141 2.83
Soukous 0 2 283 | 4.24
Rumba 0 2 |3.16
Bossa-Nova 0 |141
Gahu 0
2 11.02])8.47] 12.48 |11.02| 9.65 |14.80

Figure 11: The distance matrix of the interval vectors with the Euclidean metric.

specifically a rhythm will be represented by X = (x1, %9, x3, %4, Z5), where x; is the number
of vertices skipped by the ith polygon edge starting at vertex labelled 0. This is essentially
the same as the sequence of inter-onset time intervals since the time interval is the number
of vertices skipped plus one. The dissimilarity between two rhythms X = (z1, x9, ..., z5) and
Y = (y1,¥2, .., Ys5) is measured by the Euclidean distance between the two vectors X and Y
in this 5-dimensional interval vector space which is given by:

5
dp(X,Y) =\ > (@i — u:)? (2)

i=1
The distance matrix based on these vectors is shown in Figure 11. As before, the bot-
tom row in Figure 11 shows for each rhythm the sum of its distances to all the other five
rhythms. Most noteworthy are the highest (14.80) and lowest (8.47) values for Gahu and Son,
respectively. David Locke [32] has argued forcefully, from the music theory point of view,
the uniqueness of the Gahu bell pattern. The results obtained here provide mathematical
confirmation of Locke’s musical analysis. They also provide mathematical evidence that the
clave Son is most like all the others. This may explain the world-wide popularity of the Son.

5.3 The minimum spanning tree

The minimum spanning tree is a powerful and useful visualization tool for understanding the
structure of data in higher dimensional spaces such as that encountered here [50]. For this
reason it has been used with great success in cluster analysis [12]. The distance matrix of
Figure 11 defines a complete weighted graph GG. The six rhythms correspond to the six nodes
of the graph. The graph is complete because every pair of nodes is connected by an edge.
The weight on each edge connecting two nodes is the distance between the corresponding
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Minimum Spanning Tree

Soukous
™

Rumba e Son. e Shiko

¢ Bossa-Nova

Gahu

Figure 12: The minimum spanning tree determined by the distance matrix of interval vectors.

two rhythms. The minimum spanning tree (MST) of G is the subgraph of G that is a tree
(has no cycles), connects (spans) all six nodes, and has minimum weight among all such
trees. Here the weight of the tree is just the sum of the weights of all its edges. Note that
in general the minimum spanning tree may not be unique. There exist many algorithms for
computing the minimum spanning tree [17]. The simplest from a conceptual point of view
is Kruskal’s algorithm. This algorithm first sorts all pairs of nodes (edges) by increasing
weight (distance) and then scans through this sorted list picking edges to add to a growing
tree as long as no cycles are created. Proceeding in this way with the distance matrix in
Figure 11 quickly results in the minimum spanning tree shown in Figure 12. The topology
of the minimum spanning tree in Figure 12 provides at a glance a good idea of how the
smallest distances (1.41) in the distance matrix relate to one another qualitatively. Here one
can visualize instantly that Gahu is most unlike the remaining rhythms whereas Son is most
similar to the other five rhythms. In fact Son is the center of gravity of the tree in the sense
that it is the node that minimizes the sum of distances (within the tree) to all other nodes.

5.4 Phylogenetic trees

The drawing of the minimum spanning tree in Figure 12 does not attempt to quantitatively
visualize all the distances in the distance matrix of Figure 11. For this purpose there exist
more powerful (and more difficult to compute) tools such as the phylogenetic trees of Gaston
Gonnet [16] and others. For details on how to construct such trees see [16]. The Compu-
tational Biochemistry Research Group of the Swiss Federal Institute of Technology (ETH)
offers a web service for computing phylogenetic trees from distance matrices submitted to
their server. Although designed for applications to gene sequence analysis in molecular biol-
ogy, phylogenetic trees can be constructed for any distance matrix such as the ones obtained
from sequences of notes in rhythms. Such trees serve to describe the clustering relationships
between objects much like the more traditional hierarchical cluster analysis techniques used
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Phylogenetic Tree

Bossa-Nova Gahu
. L ]

Son
Soukous

Rumba Shiko

Figure 13: The standard phylogenetic tree constructed from the distance matrix in Figure 11.

in data analysis [12].

Two types of phylogenetic trees that provide insighful visualization were computed from
the interval-vector distance matrix of Figure 11. The first is the standard tree shown in
Figure 13. Here the tree is drawn such that (as much as possible) the shortest Euclidean
distance travelled in the tree between any two nodes corresponds to the distance between the
pair of rhythms in the distance matrix. Such a tree constructed from the distance matrix of
Figure 11 is shown in Figure 13. This tree again clearly shows that Son is the most similar
rhythm to the rest whereas Gahu is the most different. Gahu and Soukous are evidently the
furthest pair. The tree displays visually at a glance an approximation to all the numerical
information contained in the distance matrix.

The second type of phylogenetic tree is the “vertically” oriented rooted tree. Such a
tree constructed from the distance matrix of Figure 11 is shown in Figure 14. In this tree
the minimum vertical distance travelled in traversing the tree between two nodes (up and
down) is proportional to the distance between the pair of rhythms in the distance matrix.
For example, the distance between Gahu and Soukous is 4.24. In the rooted phylogenetic
tree this distance is proportional to the distance travelled upwards (vertical component only)
from the Gahu node to the root plus the distance travelled downwards (vertical component
only) from the root to the Soukous node. The rooted phylogenetic tree shows clearly the
hierarchical clustering structure that exists between all the rhythms. The first partition is in
the two clusters: Bossa-Nova and Gahu in the right cluster and the other four into the left
cluster. The left cluster then breaks up into Shiko and the other three: Son, Soukous and
Rumba. Finally, Son breaks away from the pair Soukous and Rumba.

5.5 Proximity graphs

By definition the minimum spanning tree and the phylogenetic trees considered above nec-
essarily describe the distance structure in the distance matrix as a tree. However, one may
be interested in knowing how appropriate such a tree-like structure is. In the bioinformatics
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Rooted Phylogenetic Tree root

Soukous Gahu

Figure 14: The rooted phylogenetic tree constructed for the distance matrix in Figure 11.

Bossa-Nova
Gahu e

Rumba
Son

litsTree
Sp Shiko

Soukous

Figure 15: The SplitsTree constructed for the distance matrix in Figure 11.

literature there exist techniques which provide this information in a graph that is a gener-
alization of a tree. One such example is the SplitsTree [24]. The University of Bielefeld in
Germany also offers a web service for computing SplitsTrees. The SplitsTree constructed
from the distance matrix of Figure 11 is shown in Figure 15. If the tree structure does not
match the data perfectly then edges are split to form parallelograms whose size is propor-
tional to the missmatch. In Figure 15 the four edges incident to the Son have been split.
However, the parallelograms are relatively small, indicating that the underlying structure is
strongly tree-like.

A different approach to determining if the underlying graph of a distance matrix is tree-
like is obtained by using proximity graphs [25]. Consider for a moment a set of points in the
plane. For example Figure 16 shows two sets of points (ignoring the edges connecting them
for the moment). The set on the left is clearly tree-like whereas the one on the right is not.
A set of points in the plane determines a distance matrix. The distance between two nodes
in the complete graph corresponding to x and y is simply the Euclidean distance between
the locations of x and y in the plane. We would like to define a graph that we can easily
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Figure 16: The relative neighborhood graphs (RNG) of two sets of points.

compute from the distance matrix such that the graph is a tree if, and only if, the structure
of the points forms a tree. One such graph that can be used to solve this problem is the
relative neighborhood graph [47]. To construct this graph we add an edge between a pair of
vertices (nodes, points) if the points defining the pair are closer to each other than to any
other point in the set. More precisely, two points x and y are joined by an edge if for every
other point z the maximum of d(z,z) and d(z,y) is greater than or equal to d(z,y). If we
compute this graph for the two sets of points in Figure 16 then we obtain the edges shown.
The edges on the left form a tree whereas the edges on the right form a wheel. Thus the
relative neighborhood graph captures the underlying graph structure of the distance matrix
without imposing some a priori structure such as a tree.

Turning now to the distance matrix of Figure 11 for the six clave rhythms, the reader
may verify that the relative neighborhood graph computed from it yields precisely the same
topological graph as the minimum spanning tree shown in Figure 12.

6 Combinatorial Analysis of Rhythms

The application of combinatorics to the analysis of music is not new. However, almost all
such analyses have been applied to the “vertical” tone scale rather than the “horizontal”
time scale [13], [43], [41], [8]. Exceptions to this trend are the two papers by Joel Haak [19],
[20] and the one by Justin London [33].

Steve Reich [42] composed an interesting piece called Clapping Music for two people clap-
ping hands. Both performers clap exactly the same 12-time-unit thythm shown in Figure 17.
One performer repeats the sequence continually throughout the piece but the second per-
former, after having repeated the sequence 12 times, shifts the sequence by one beat. The
second player continues to shift the pattern by one time unit in the same direction every time
the pattern has been played 12 times. The piece finishes when the second performer returns
in phase with the first. Thus the last 12 combined patterns sound the same as the first 12
when both performers are perfectly in phase.

There are 8 notes (claps) in Steve reich’s Clapping Music. The number of ways we can
select 8 out of 12 time units in which to clap is (12!)/(8!)(4!) = 495. Joel Haak [19] raises
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Figure 17: The sequence used by Steve Reich in Clapping Music [42].

Figure 18: The other sequence found by Joel Haak [19].

the interesting question of how Reich might have come to select the pattern in Figure 17
out of all the possible 495. Did he listen to all 495 and select the pattern he liked best?
Haak then suggests a mathematical response to the question. If we take into consideration
that a piece should begin with a clap and not a silent pause, and if cyclic permutations
of a pattern are considered equivalent, and if during the execution of the entire piece the
combined pattern made by both performers clapping does not repeat itself, and finally, if we
do not allow consecutive repetitions of the number of claps between two consecutive pauses,
then only 2 of the 495 patterns satisfy these constraints. One is the [3,2,1,2] note pattern
Reich chose in Figure 17. The other is the [4,1,2,1] note pattern of Figure 18. Haak does
not offer a criterion for choosing between the last 2 remaining candidates. But of course if
we want to minimize the maximum range of the lengths of consecutive claps, then we obtain
Reich’s pattern. Alternately, we may invoke the criterion of maximally-even sets [8] to arrive
at Reich’s pattern. I am sure Reich will not mind if we continue to guess how he might
have arrived at his pattern. I offer an alternate non-mathematical hypothesis. Reich studied
African drumming in 1970 at the Institute of African studies at the University of Ghana.
Now one of the fundamental West-African bell patterns in 6/8 time is the Yoruba pattern
shown in Figure 19. If we insert a note between the first two notes in the Yoruba pattern we
obtain Reich’s pattern.

6.1 Permutations and multisets

In the clave rhythm patterns considered in this paper five notes are played in sixteen available
time units. The number of ways to select 5 out of 16 is (16!)/(5!)(11!) = 4368. This
is a large number of patterns. Furthermore most of these may be useless as good time-
line patterns for powerful percussive dance music. How can we reduce this large number
to an interesting small subset? Note that in the five clave patterns other than Soukous,
the minimum and maximum inter-onset intervals are 2 and 4, respectively. Therefore we
can modify the combinatorial question to take such constraints into account. Consider the
clave Son pattern in binary sequence representation 100100100010 100 0] and its
interval-vector (2 2 3 1 3) corresponding to the time units skipped (zero’s) in between the
notes played. One may ask how many permutations exist of the pattern (22 3 1 3)? Note
that these are multisets now since repetitions of the elements are permitted [23]. We have 5
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Figure 19: One of the classic 6/8 time bell patterns in Yoruba music [1].

objects of three different classes: 1 of class one, 2 of class two and 2 of class three. Therefore
the total number of different permutations of (2 2 3 1 3) is (5!)/(1!)(2!)(2!) = 30.

The reader is invited to play these. It turns out all 30 of these permutations sound great.
Among these 30 are also found the Rumba, the Gahu as well as the backward versions of the
Son, Rumba and Gahu. This also becomes evident from examining Figure 4. If one rhythm
may be obtained from another by a permutation of its interval vector the two rhythms will
be said to belong to the same interval combinatorial class. Thus Son (2 2 3 1 3), Rumba
(2321 3) and Gahu (2 2 3 3 1) belong to the same interval combinatorial class, whereas
Shiko (3 1 31 3), Soukous (2 2 3 0 4) and Bossa-Nova (2 2 3 2 2) each belong to their own
distinctive classes.

Returning to the 30 rhythms of the Son-Rumba-Gahu interval combinatorial class, and
excepting the Son played backwards because it is a weak palindrome, the remaining 26
rhythms have an eerie resemblance to the Son, Rumba and Gahu but sound more modern,
more jazzy somehow. Any one of them could be successfully incorporated in new music. This
interval combinatorial technique suggests a fruitful approach to automated generation of new
rhythms.

7 Concluding Remarks

Several general and specific conclusions may be drawn from this study. First consider the
general conclusions. Three measures of the complexity of rhythms were compared with re-
spect to the six fundamental clave rhythms in African, Brazilian and Cuban music. Pressing’s
congnitive complexity measure gives results which match well with experience. The Lempel-
Ziv measure appears to be useless and this finding confirms previous preliminary studies on
this measure in another context. The interval-vector distance was found to be good for com-
paring the similarity of rhythms. Phylogenetic trees appear to be useful for the visualization
and cluster analysis of rhythms. Viewing the interval vectors as multisets and generating
permutations of these multisets provides an easy manner of generating new and interesting
rhythms from a given rhythm.

Turning to the specific conclusions about the six clave rhythms we may sumarize the
main results as follows. It has been shown that it is possible with three simple geometric
features to automatically classify the six rhythms without knowledge of their starting note
The Son clave pattern (the only weak palindrome in the set) is most like all the others. It
is in some sense the center of all the claves. It has elements of all the other claves and
perhaps because of this it is accessible to a wider audience. It is also one of the simplest
rich rthythms. Perhaps these are the reasons for its worldwide popularity. The Son, Rumba
and Gahu belong to the same interval-combinatorial family. Only Bossa-Nova and Shiko are
strong palindromes, which indicates they possess a strong symmetry structure. Interestingly,
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these two rhythms have diametrically opposite cognitive complexities according to Pressing’s
measure [40]. Shiko has the lowest value of 8 and Bossa-Nova the highest value of 22. The
fundamental clustering evident from the phylogenetic tree construction algorithm is (1) Gahu
and Bossa-Nova, (2) the remaining four rhythms. Rumba is the most unique of the six claves
from the geometric point of view in that its polygon contains no isoceles triangles, no right
angles, and no axis of symmetry. Gahu is one of the most complicated rhythms according to
the three measures of complexity considered here. From the mathematical point of view it
is the most unique in the sense that it is the most different from the rest. These results add
mathematical support to the musical analysis of the Gahu rhythm provided by Locke [32].
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