
lrsarith: a small fixed/hybrid arithmetic C library

David Avis
School of Informatics, Kyoto University, Kyoto, Japan and

School of Computer Science, McGill University, Montréal, Québec, Canada

Charles Jordan
Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan

January 29, 2021

Abstract

We describe lrsarith which is a small fixed precision and hybrid arithmetic C library for integers
and rationals that we developed for use in the lrslib library for polyhedral computation. Using a
generic set of operations, a program can be compiled with either 64-bit or 128-bit (if available)
fixed precision, with an extended precision library such as GMP or the built-in MP routines. A
simple scheme checks for overflow and either terminates the program or, in hybrid mode, changes
to a higher precision arithmetic. Implementing these arithmetics in lrslib resulted in only minimal
changes to the original code. We give computational results using lrs and mplrs, vertex/facet
enumeration codes in lrslib, using 64 and 128 bit fixed integer arithmetic with and without overflow
checking, GMP arithmetic, lrsarith hybrid arithmetic with both GMP and MP, and FLINT hybrid
arithmetic. We give a small self-contained example C program using the lrsarith package in both
fixed precision and hybrid mode.

1 Introduction

When writing mathematical software, a fundamental choice is the arithmetic to use. It is easy to
be seduced by the performance of native integers, but the possibility of incorrect output caused
by overflow can be a major concern. To guarantee correctness, in many cases one must rely on
multiprecision arithmetic such as that provided by the GNU Multiple Precision (GMP) Arithmetic
Library. This comes with a large performance penalty compared to native integers on inputs where
they suffice, and it’s tempting to maintain multiple versions with different arithmetic.

Until version 7, this was the situation with lrslib, a library of programs for polyhedral computation
including e.g. lrs for vertex/facet enumeration and redund for redundancy removal. From the outset
lrslib used exact arithmetic and could be compiled with either fixed precision C integer arithmetic
(without overflow checking) or with an internal extended precision arithmetic library. For safety, the
default was to use extended precision. Later versions could also be compiled with the GMP package
and more recently, with the hybrid arithmetic package available in FLINT. The fixed precision versions
perform several times faster than the extended precision versions but can produce incorrect results if
overflow occurs.

For this reason we developed a simple scheme to detect the possibility of overflow occurring while
using fixed precision arithmetic. The code could then halt and allow the user to restart using higher
or extended precision arithmetic. This led to the development of a hybrid scheme in lrslib to allow
automatic restart with the next higher precision arithmetic. This gives users the performance of native
arithmetic in most cases where it is safe, while keeping the correctness provided by the extended
precision versions. The restart is from (very near) the point where a possible overflow was detected.
Implementing this in lrslib resulted in only minimal changes to the original code and gives a significant
performance improvement.

The main purpose of this paper is to explain how overflow checking and hybrid arithmetic was
implemented and to give numerical results for a case study involving vertex/facet enumeration. This

1

explains the improved performance of lrslib 7 compared to previous versions. These techniques can be
used in any C code without requiring the full lrslib library, so we created the much smaller, independent
lrsarith package which contains only the arithmetic code. It can be downloaded from [1].

Implementing arithmetic in lrsarith allows developers to postpone the choice of arithmetic until
compile time. With some additional effort to handle overflows and restarting from intermediate points
of the computation, it also allows the developer to obtain the performance of native integers when
they suffice and the correctness of an extended precision library when required.

1.1 Related work

When comparing various codes for vertex/facet enumeration [2], we noted that the hybrid arithmetic
available in normaliz could give a large speedup for certain inputs. The default in normaliz is to begin
the computation in 64-bit integers and to restart using GMP extended precision if overflow occurs.
However, the restart is from the beginning of the computation, which can hurt performance on certain
inputs where the repeated work is significant (see the comparison in [2]).

The Fast Library for Number Theory (FLINT) [5] is a collection of modules that support various
arithmetic operations. In particular, we use the fmpz module for extended precision arithmetic that
balances “very efficient” performance on small integers with performance similar to GMP for large
integers. We will compare lrsarith performance with FLINT in Section 4.4. Although FLINT is easier
to develop with since switching arithmetic is transparent to the user, lrsarith can give higher perfor-
mance on small integers. FLINT contains much additional functionality beyond extended precision
arithmetic, but usually requires the user to install it.

Porta [4] is a collection of routines related to polytopes, including vertex/facet enumeration. It
supports both fixed precision and its own multiprecision arithmetic and was included in the compari-
son [2] mentioned earlier.

The standard general purpose library for extended precision arithmetic with large integers is GMP1.
It is highly optimized for many platforms and was the default in lrslib for some time. Historically,
lrslib used its own multiprecision arithmetic (MP) and this is still supported. Comparisons are given
in Section 4.4.

1.2 Organization of the paper

The paper contains two parts that can essentially be read independently. The first part gives a detailed
explanation of how we implement the various arithmetics with a simple but complete example program
that can be used as a template for developing with lrsarith. In Section 2 we show how overflow checking
is implemented in our fixed precision lrslong library. We give a simple example to show how a single
C code can be compiled with 64-bit, 128-bit, MP or GMP arithmetic. In the first three cases the
program terminates when the possibility of overflow is detected. In Section 3 we continue the example
to show how a program can restart after overflow has been detected, using the next level of arithmetic.
This form of hybrid arithmetic is used in lrslib. Computational results are presented in both sections
for a larger example involving Collatz sequences.

The second part of the paper begins in Section 4 where we present our case study and give
computational results comparing various arithmetic packages that can be used in lrslib. These include
fixed integer arithmetic with and without overflow checking, GMP arithmetic, two versions of lrsarith
hybrid arithmetic and FLINT hybrid arithmetic.

2 Fixed arithmetic

2.1 Definitions and overflow handling

Arithmetic is handled in lrsarith by defining a generic integer type and a set of generic operations. A
generic integer a, integer vector v and integer matrix A are defined

1https://gmplib.org/

2

https://gmplib.org/

lrs_mp a; lrs_mp_vector v; lrs_mp_matrix A;

allocated

lrs_alloc_mp(a); v=lrs_alloc_mp_vector(n); A=lrs_alloc_mp_matrix(m,n);

and freed

lrs_clear_mp(a); lrs_clear_mp_vector(n); lrs_clear_mp_matrix(m,n);

where m and n are the dimensions. The types are assigned at compile time depending on the arithmetic
used. For 64-bit and 128-bit integers they are assigned to fixed length integers and for GMP arithmetic
to the GMP integer type:

typedef long long lrs_mp[1]; /* one long integer */

typedef __int128 lrs_mp[1]; /* one 128-bit integer */

typedef long long lrs_mp[MAX_DIGITS + 1]; /* one MP integer */

typedef mpz_t lrs_mp; /* one GMP integer */

Operations using lrs mp integers are written generically. Typical examples are as follows where
a,b,c,d,e are lrs mp integers, i is a long long and the equivalent C code is given in parentheses:

itomp(i,a); (a=i)

copy(b,a); (b=a)

addint(a,b,c); (c=a+b)

mulint(a,b,c); (c=a*b)

divint(a,b,c); (c=a/b a=a%b)

linint(a, ka, b, kb); (a=a*ka+b*kb for ka, kb long long integers)

qpiv(a,b,c,d,e); (a=(a*b-c*d)/e where the division is exact)

A small C program, fixed.c, using some of these operations is given in Appendix A. It reads in an
integer k and attempts to repeatedly square it six times. We will discuss the program later in this
section. Generic operations are either assigned at compile time by macros, for example:

#define addint(a,b,c) *(c) = *(a) + *(b) /* 64-bit or 128-bit */

#define addint(a,b,c) mpz_add((c),(a),(b)) /* GMP */

or by C code in the case of MP. In this way arithmetic operations are essentially the same as using
the underlying arithmetic package.

The problem is that overflow is not detected in 64-bit and 128-bit arithmetic. We solve this problem
by a technique we call lazy overflow handling. Using very light extra computation we detect when
it is possible that an overflow may occur. Control is then given to an overflow handler that either
halts computation or restarts the program using arithmetic with higher precision. While restarting
from the beginning of execution is simplest, later we will see options for restarting from intermediate
checkpoints – allowing programs to use faster arithmetic for initial portions of computations in some
cases.

To incorporate lazy overflow handling we define some constants that depend on the word size W
which is either 64 or 128 in lrsarith:

MAXDm =
⌊√

2W−1 − 1
⌋

MAXDl = 2W/2−1 − 1 MAXDa = 2W−2 − 1 (1)

MAXDa is the constant used in testing for overflow when using addition or similar operations, MAXDl
is used for linint and MAXDm is used for multiplying. Three macros test whether the operands a

and b are out of bounds:

#define mpsafem(a,b) *(a)> MAXDm ||*(b)> MAXDm ||*(a)<- MAXDm ||*(b)<- MAXDm

#define mpsafel(a,b) *(a)> MAXDl ||*(b)> MAXDl ||*(a)<- MAXDl ||*(b)<- MAXDl

#define mpsafea(a,b) *(a)> MAXDa ||*(b)> MAXDa ||*(a)<- MAXDa ||*(b)<- MAXDa

3

Using these macros we can write macros for the generic operations above as follows:

#define addint(a,b,c) {if(mpsafea(a,b)) lrs_overflow(1); else *(c) = *(a) + *(b);}

#define mulint(a,b,c) {if(mpsafem(a,b)) lrs_overflow(1); else *(c) = *(a) * *(b);}

#define divint(a,b,c) {*(c) = *(a) / *(b); *(a) = *(a) % *(b);}

#define linint(a,ka,b,kb) {if(mpsafel(a,b)) lrs_overflow(1); else *(a)=*(a)*ka+*(b)*kb;}

#define qpiv(a,b,c,d,e) {if(mpsafel(a,b)|| mpsafel(c,d)) lrs_overflow(1);

else *(a) =(*(a) * *(b) - *(c) * *(d))/(*e);}

We claim that if the integer arithmetic would overflow then lrs overflow is called. Since we are using
signed integer arithmetic this is equivalent to proving that the result (and intermediate values) in each
case is at most 2W−1 − 1. Proceeding case by case:

• addint(a, b, c): |a|, |b| ≤ MAXDa and so a + b ≤ 2 ∗ (2W−2 − 1) = 2W−1 − 2 ;

• mulint(a, b, c): |a|, |b| ≤ MAXDm and so a ∗ b ≤
(√

2W−1 − 1
)2

= 2W−1 − 1 ;

• linint(a, ka, b, kb) |a|, |b|, |ka|, |kb| ≤ MAXDl and so

a ∗ ka + b ∗ kb ≤ 2 (2W/2−1 − 1)2 = 2W−1 − 2W/2+1 + 2 .

Note that divint cannot overflow and that the analysis for qpiv is thus essentially the same as for
linint, proving the claim.

Rational arithmetic is handled in lrsarith in a very simple way by representing the rational number
a/b by two lrs mp integers a and b. The operation

reduce(a,b)

divides a and b by their greatest common divisor. Arithmetic operations for rationals are based on
the integer operations above. For example

mulrat(a,b,c,d,e,f) (e/f = a/b * c/d, with e/f reduced)

is implemented by

mulint (a,c,e);

mulint (b,d,f);

reduce (e,f);

Overflow checking for rational arithmetic is inherited from the corresponding integer arithmetic.
We now look more closely at the code fixed.c for iterated squaring given in Listing 1 of Appendix A.

Among the includes on lines 1–3 we have the lrsarith header file. On lines 7–9 is the function lrs overflow
that handles overflow processing. In this case it simply prints a message and halts the program. In
the main routine we see that two lrs mp variables are declared. These are allocated and cleared in
lines 16 and 26. These are null operations for 64 or 128-bit arithmetic and MP but are needed in
GMP. On line 15 we initialize the arithmetic package. The next lines read an integer k and attempt
to iteratively square it six times.

Using the makefile in Listing 2 we can compile fixed.c with each of the arithmetic packages de-
pending on the compiler switches used. For 64 or 128-bit arithmetic the -DLRSLONG switch is set, with
-DB128 also set for 128-bit arithmetic. The -DSAFE switch enables overflow checking and handling
as described in this section. The files lrsarith.h and lrsarith.c use these switches to ensure that
the correct arithmetic files are included. Lines 2 and 3 produce the binaries fixed1 and fixed2. For
illustrative purposes we also compile without the -DSAFE switch obtaining fixed1n and fixed2n in lines
4 and 5. In this case no overflow checking is performed. With the -DMP switch set the MP version is
produced. Finally by setting the -DGMP switch we compile with the external GMP library which must
be preinstalled. For simplicity, we assume that the necessary files are in standard locations otherwise
the locations need to be specified. We ran fixed1, fixed2, fixedmp and fixedgmp with the input k = 5
getting the following output, respectively:

4

5 25 625 390625 152587890625 overflow detected:halting

5 25 625 390625 152587890625 2328364365386962890625 overflow detected:halting

5 25 625 390625 152587890625 23283064365386962890625 542101086242752217003726400434970855712890625

5 25 625 390625 152587890625 23283064365386962890625 542101086242752217003726400434970855712890625

fixed1 can compute 516 before overflowing and fixed2 can also compute 532. Both fixedmp and
fixedgmp can compute 564. Running fixed1n and fixed2n with no overflow protection produces incorrect
output. This can observed by noting the three cases where the last digit is not 5:

5 25 625 390625 152587890625 3273344365508751233 7942358959831785217

5 25 625 390625 152587890625 23283064365386962890625 -30240059481632067979667719627811971327

2.2 Fixed precision performance

We briefly compare performance of the various fixed arithmetic packages in order to evaluate the
overhead used by overflow checking. While this can also be seen in the more extended comparison
done in Section 4, here we use a simple code to further demonstrate the use of lrsarith.

We consider a problem that uses a great deal of relatively simple computations and little output.
The Collatz conjecture [6, 7] is a famous open problem in number theory: given a number k, we
replace k by 3k + 1 if k is odd and by k/2 if it is even. The process continues in the same way and
the question is whether for every starting value, the sequence eventually reaches 1. There is a great
deal of work [6, 7] on the conjecture and it has been [3] verified2 for all k < 268.

Our goal is to compare arithmetic packages and not to computationally verify larger values, so we
avoid techniques such as huge lookup tables for simplicity. We consider the Collatz sequence from k
as a path from the integer k to the value one. The set of such paths defines an infinite tree with root
k = 1 and the conjecture holds if all integers appear in the tree. One way to make the tree finite is to
give a parameter max and consider the tree of all paths to the root that do not contain an integer k
greater than max . This finite tree can be generated from the root without using memory to store its
nodes using the reverse search procedure.

We wrote a code coll3 to generate the tree in this way. As long as max < 263/3 the program
will not overflow in 64-bit arithmetic. Table 1 gives the running times4 when the various arithmetic
packages are compiled with coll. The binary collflint uses FLINT arithmetic (version 2.6.3) and the
other binaries are labelled in the same way as for fixed.c above.

max nodes coll1 coll1n coll2 coll2n collgmp collflint collmp

108 39523168 0.70 0.60 5.20 4.63 9.20 7.24 7.19
109 395436300 6.50 5.79 54.37 48.40 91.87 72.26 72.35
1010 3953296865 82.28 57.26 570.26 511.66 923.77 866.20 864.84

Table 1: Collatz tree generation: times in seconds Collatz tree (mai48)

The values in Table 1 are small enough to avoid overflows, but one can see that overflow checking
in lrslong results in only minor overhead. The relative performance of the packages will vary between
machines, mix of arithmetic operations, compilers and versions of extended precision libraries; however,
these results give a sample of what can be obtained. It is also worth noting that the multiprecision
arithmetics are generally focused more on larger operands. In any case, for this computation on this
machine, 128-bit arithmetic is roughly eight times slower than 64-bit arithmetic. FLINT arithmetic
is somewhat faster than GMP (version 6.0) but slower than the dedicated fixed precision arithmetics.
This is generally reasonable – FLINT makes more effort to obtain good performance on small operands,
however lrsarith fixed arithmetic is essentially the same as using native arithmetic.

2See also David Barina’s page on the current status: https://pcbarina.fit.vutbr.cz/
3coll is contained in lrsarith-010.
4mai48 : 2x AMD EPYC7552 2.3GHz, 48 cores, 512 GB memory, CentOS 7.6, gcc 4.8.5

5

https://pcbarina.fit.vutbr.cz/

3 Hybrid arithmetic

The fixed arithmetic versions described in the previous section are very simple to implement and easy
to use, giving good performance for inputs that do not require very long integers. If overflow occurs the
user can manually rerun the job with a higher precision arithmetic package. However, it is certainly
more convenient to automatically switch from one arithmetic to another with higher precision when
overflow could occur. In this section we describe how this can be done using lrsarith, while making
only minor modifications to the original user code.

3.1 Combining fixed arithmetic packages

We illustrate our approach using the example program of the previous section that reads an integer k
and successively squares it. The hybrid code is shown in Appendix B. Lines 9–29 contain the function
run that is essentially the function main from Appendix A. Instead of reading the integer k, it is passed
to run as a parameter.

The major change is the use of setjmp to allow lrs overflow to return control to the program that
calls run. This is achieved via the variable buf1 defined on line 7. The main loop (lines 18–25) of run
is enclosed by a test on line 17. If lrs overflow (lines 31–33) is called by the arithmetic package a long
jump is performed to the statement immediately after the end of the enclosed loop, i.e. line 26. This
prints a warning and returns to the routine that called run.

In fact there are three routines that call run, namely run1, run2, and runmp (GMP or MP), but only
the first two can trigger a call to lrs overflow. The function run itself will need to be compiled three
times, once for each package. The arithmetic package used and the routine to call run are selected
at compile time by compiler directives in the makefile and on lines 35–43, respectively. The problem
now arises that since run will be compiled three times the three versions will need different names,
a process known as name mangling. In fact all of the routines that use lrs mp will also need name
mangling. The particular scheme used in lrsarith was suggested by David Bremner and is illustrated
in line 5. A unique suffix suf defined in the arithmetic header file used is added to the function run.
These define lines will be needed for each user supplied routine. The define for lrs overflow is contained
in lrslong.h.

Listing 5 contains the main program with its header file given in Listing 4. It begins by reading
the parameter k and by calling run1 which uses 64-bit arithmetic. If overflow occurs a return code
of 1 is triggered by lrs overflow causing main to call run2 using 128-bit arithmetic. If this in turn
overflows a final call is made to runmp which uses GMP5. In the makefile given in Listing 6, lines
4–6 compile the arithmetic libraries. Lines 7–9 compile hybridlib.c three times, once with each
arithmetic library. Finally line 11 combines everything into a single executable hybrid. Running hybrid
with k = 5 produces:

5 25 625 390625 152587890625 overflow detected:restarting

5 25 625 390625 152587890625 2328364365386962890625 overflow detected:restarting

5 25 625 390625 152587890625 23283064365386962890625 542101086242752217003726400434970855712890625

3.2 Hybrid performance

We continue the example of generating Collatz trees introduced in Section 2.2. This time we use much
larger values of max in order to create overflow conditions in both 64-bit and 128-bit arithmetic. As
the trees now become extremely large, we terminate the programs after 108 nodes have been generated.
The program is deterministic so in each case the same nodes are traversed. The program coll is the
hybrid code combining coll1, coll2 and collgmp created in the same way as hybrid described above.

The results are shown in Table 2. On each line the final arithmetic used in coll is shown in blue. It
is interesting to observe that for each of these three runs collgmp runs in roughly the same time and
that, for max = 1032, this is faster than the 128-bit arithmetic coll2 (and hence coll).

The simple scheme described in this section will be adequate in many applications but has a
number of disadvantages. First, memory allocated during the run for a given arithmetic may not be

5For simplicity we have omitted lines which produce a hybrid executable with MP, but they are in the lrsarith makefile.

6

max coll coll1 coll2 collgmp collmp collflint
(hybrid) (hybrid)

1016 1.67 1.70 18.60 24.43 22.93 24.85
1032 36.21 (o) 36.17 24.15 34.10 34.04
1048 25.59 (o) (o) 24.66 45.83 45.97

(o)=possible overflow detected

Table 2: Collatz tree generation: 108 nodes, times in seconds (mai48)

freed after an overflow occurs, causing a memory leak. More importantly, the simple scheme here
restarts from the start of program execution. Forgetting the past can be helpful but this can hurt
performance if overflow occurs near the end of program execution. It would be much better to not
redo work that has already been done, especially with slower arithmetic.

In applications such as lrslib, these are serious issues. The definition of lrs mp depends on the arith-
metic, so offsets into structures containing lrs mp can change after switching arithmetic. Handling
overflows appropriately is therefore more complicated than simply forgetting the past and restarting,
as was described here.

The solution used in lrslib was to use a global variable to point to the allocated data structures. This
allows lrs overflow to free the data after overflow is detected, before switching to the next arithmetic.
A further improvement in lrslib was to allow the program to restart at the point in the calculation
where the overflow was detected. Again this was done using a global variable and also the ability of
the original code to restart. Fortunately this was already available. In other programs, it may be
necessary to add periodic checkpoints and it can be helpful to separate structures that contain lrs mp

from those that don’t.

4 Vertex/facet enumeration problems

When comparing [2] various codes for vertex/facet enumeration, we noted that hybrid arithmetic could
give a large speedup for certain inputs, but that this was not available in lrslib at the time. We now
turn our attention to the original motivation for developing the hybrid version of lrsarith: obtaining
these speedups in lrslib v. 7.

We begin by introducing the basics of vertex and facet enumeration. Then, we explain the parallel
hybrid version mplrs, since this handles overflow somewhat differently than hybrid lrs. In Section 4.3
we describe the experimental setup and in Section 4.4 we present a comparison between the different
arithmetic packages as used in lrs and mplrs.

4.1 Background

A convex polyhedron P can be represented by either a list of vertices and extreme rays, called a
V-representation, or a list of its facet defining inequalities, called an H-representation. The vertex
enumeration problem is to convert an H-representation to a V-representation. The computationally
equivalent facet enumeration problem performs the reverse transformation. For further background
see Ziegler [8]. We will use the lrs program in lrslib to experiment with various instances of these
problems. A comparison with other codes including mplrs, a parallel version of lrs, to solve these
problems can be found in [2].

The input is represented by an m by n matrix. For a vertex enumeration problem this is a list
of m inequalities in n − 1 variables whose intersection define P . A vertex (resp. extreme ray) is the
intersection of a set of n − 1 (resp. n − 2) input inequalities, taken as equations, that satisfies the
remaining inequalities. A major difficulty is caused by degeneracy which occurs when more than
n−1 inequalities intersect at a vertex. In this case lrs generates multiple representations of the vertex,
known as bases. For a facet enumeration problem the input is a list of the vertices of P each beginning
with a 1 in column one6. A facet is defined by a set of n−1 input vertices which span a hyperplane for

6Extreme rays would be indicated by a zero in column one.

7

which all of the other input vertices lie on one side. Here degeneracy is manifested when more than
n − 1 vertices lie on the hyperplane. Again lrs will generate the facet multiple times, each known as
a basis. When degeneracy occurs the vertex or facet is output when the index-wise lexicographically
minimum basis is found.

4.2 Hybrid mplrs

On detecting a possible overflow, the hybrid version of lrs switches to the next highest precision arith-
metic package which it uses from that point onwards. The sequential implementation was parallelized
as mplrs [2] which dynamically partitions the work and provides a series of subproblems to multiple
lrs workers.

If each of these workers was a hybrid lrs process, it would start each problem with the fastest
arithmetic and switch to higher precision when detecting a possible overflow. This has a few drawbacks;

1. Duplicate output: it’s possible that when restarting after an overflow, we reprint the most recent
line of output.

2. Performance: if overflow occurs, it usually occurs often in the run (ie not infrequently). There
is overhead in restarting and switching arithmetic and so we would prefer to avoid frequent
switches.

In the hybrid version of mplrs, each of the workers is a fixed arithmetic process that returns to
mplrs when possible overflow is detected. At that point, mplrs re-initializes the worker in question
using the next available arithmetic. All output produced by the subproblem is discarded and the
worker restarts from the beginning (of the subproblem). The worker uses the new arithmetic from
that point onwards.

This approach avoids duplicate output: by default, hybrid mplrs holds output produced by the
worker if the arithmetic could overflow, flushing it only when the job ends. It also resolves the second
problem; each worker can only overflow and switch arithmetic twice in the overall run – the same as
hybrid lrs. In addition, if overflow is a rare event then it is possible for only some workers to overflow.
This makes larger speedups possible comparable to hybrid lrs.

There is overhead in two areas. First, when overflow is detected the worker restarts its job. This
overhead is limited because jobs are usually very small7 and workers can only overflow at most twice
during the run. Next, since mplrs traverses different parts of the reverse search tree in a different
order compared to lrs, it’s possible for overflow to occur earlier than it would in lrs. This could hurt
performance if lrs overflows only at the end but could also help performance by avoiding early lrs
overflows.

One complication is that for volume computation, mplrs internally uses the maximum precision
arithmetic available. This means that mplrs may not agree with the worker process on arithmetic.
Communication between the worker process and mplrs therefore avoids using lrs mp integers.

After checkpointing and restarting, hybrid mplrs begins again with the fastest arithmetic available.
Checkpoint files are compatible between the various arithmetic packages.

4.3 Experimental setup

The polytopes we tested are described in Table 3 and, except for two new problems, were previously
described and used in [2]. The problems range from non-degenerate to highly degenerate polyhedra.
This table includes the results of an lrs run on each polytope as lrs gives the number of bases in a
symbolic perturbation of the polytope. The new problems are:

• cp7 is the cut polytope for 7 points which has input coefficients 0 or 1 and is highly degenerate.

• p8-6 is related to the holographic cone studied in physics and is an extension of the eight point
cut polytope. Input coordinates are 0, 1 or -1 and it is the most degenerate problem studied.

7See e.g., Figure 3(c,d) in [2].

8

We include a column labelled degeneracy which is the number of bases divided by the number
of vertices (or facets) output, rounded to the nearest integer. We have sorted the table in order of
increasing degeneracy. The horizontal line separates the non-degenerate from the degenerate problems.
The corresponding input files are available by following the download link at [1]. Note that the input
sizes are small, roughly comparable and much smaller than the output sizes.

Name Input Output lrs
H/V m n size V/H size bases secs depth degeneracy

c30 V 30 16 4.7K 341088 73.8M 319770 36 14 1
c40 V 40 21 12K 40060020 15.6G 20030010 7531 19 1

km22 H 44 23 4.8K 4194304 1.2G 4194304 234 22 1
perm10 H 1023 11 29K 3628800 127M 3628800 283 45 1

vf500 V 500 7 98K 56669 38M 202985 137 41 4
vf900 V 900 7 20K 55903 3.9M 264385 23 45 5
mit71 H 71 61 9.5K 3149579 1.1G 57613364 15474 20 18
fq48 H 48 19 2.1K 119184 8.7M 7843390 44 24 66
mit H 729 9 21K 4862 196K 1375608 132 101 283
cp7 V 64 22 3K 116764 7.4M 308644212 4071 41 2643
bv7 H 69 57 8.1K 5040 867K 84707280 1256 17 16807
p8-6 H 154 92 36K 4452 1.2M 110640628 16152 63 24852

Table 3: Polytopes tested and lrs v. 7.1 times (mai48)

4.4 Comparison of arithmetic packages

In this section we give numerical results on using lrslib to solve the vertex enumeration problems
described in the previous section with the various arithmetic packages in lrsarith. We test the following
suite of codes, which apart from the exception noted below, are available in lrslib v. 7.1:

• lrs1: 64-bit fixed arithmetic with overflow checking.

• lrs2: 128-bit fixed arithmetic with overflow checking.

• lrsgmp: GMP arithmetic (version 6.0). Comparable to default lrs v. 6.2 and earlier.

• lrs: lrsarith hybrid arithmetic. Starts with lrs1 and switches to lrs2 (if available) and finally
lrsgmp. Default version of lrs.

• lrsMP8: As lrs except in the final step internal MP arithmetic is used.

• lrsflint: FLINT hybrid arithmetic (version 2.6.3).

• mplrsgmp: Multi-core version of lrsgmp, comparable to default mplrs v. 6.2 and earlier.

• mplrs: Hybrid multi-core version of lrs. Default version of mplrs.

Also available in lrslib v. 7.1 are the parallel versions mplrs1, mplrs2, and mplrsflint of the corresponding
lrs codes above.

The results of the tests are shown in Table 4. The programs lrs1 and lrs2 either produce the correct
output or indicate that an overflow may occur (o) and terminate. The columns lrs and lrsMP give the
running times for the hybrid versions. When 64 or 128-bit arithmetic suffices these two running times
are essentially the same. When extended precision is required the internal MP arithmetic may be
much slower than GMP, especially for c40 , which requires 459 decimal digits. The final two columns
show the speedups obtained by using the multicore versions mplrs and mplrsgmp with 40 processors
available.

In the table we show in blue which arithmetic version was in use when lrs, shown in red, terminated.
As to be expected lrs performs roughly the same as lrsgmp when the integers become too large for

8Available in v. 7.2 or on request.

9

Name Single Arithmetic Hybrid Arithmetic 40 cores
lrs1 lrs2 lrsgmp lrs lrsMP lrsflint mplrsgmp mplrs

c30 (o) (o) 36 36 295 42 2 3
c40 (o) (o) 7707 7581 97532 8341 402 389

km22 (o) (o) 237 234 384 187 8 8
perm10 288 538 2429 283 284 1120 113 16

vf500 (o) (o) 139 137 1658 163 12 11
vf900 (o) 23 103 23 23 170 8 2
mit71 (o) (o) 15489 15474 110467 26432 731 723
fq48 44 77 265 44 44 147 11 1
mit (o) 134 563 132 131 270 27 7
cp7 4105 6824 25030 4071 4039 14413 1141 191
bv7 1276 2346 7981 1256 1252 4874 357 65
p8-6 16197 23271 56519 16152 15970 45838 2395 661

(o)=possible overflow detected

Table 4: Comparison of running times for various types of arithmetic, lrslib v. 7.1 (mai48)

fixed precision. Speedups of 2–4 times are observed for the combinatorial problems which can be
solved using only 64 or 128 bits. In general lrsflint did not perform as well as lrs but it is usually faster
than lrsgmp on the combinatorial problems. The approach used in lrsarith hybrid arithmetic allows
it to obtain essentially native integer performance, but requires effort from the developer to handle
overflow. FLINT is easier for the developer but did not achieve the same performance when all values
are small. Another possible reason for the lack of performance is that we did not use FLINT matrices
as this would have required substantial reprogramming of lrs.

We can observe that 128-bit arithmetic runs roughly 1.5–2 times slower than 64-bit arithmetic,
when 64-bit arithmetic suffices. Hence there is a strong incentive to start the computation with 64
bits using 128 bits only when necessary. This latter outcome occurred for mit and vf900 .

5 Conclusion

We introduced lrsarith which is a small C library for performing fixed precision arithmetic on integers
and rationals with overflow protection and allows hybrid arithmetic. It was developed as part of the
lrslib polyhedral computation package. However, due to its small size and ease of use we decided to
release it as an independent package. The details of the method used and small examples were given
in the first part of the paper.

In the second part we gave computational results for some vertex enumeration problems. The
examples show the diversity of such problems and this is reflected in the arithmetic precision required
to solve them. Many combinatorial polytopes involve calculations that can be completed without
overflow using 64 (or 128) bit integers. Using fixed arithmetic with overflow checking or hybrid
arithmetic, speedups of 2–4 times can be achieved and these carry over to parallel implementations.
The new hybrid version described here explains the performance improvements found in lrslib version
7 relative to previous versions or earlier comparisons [2].

Acknowledgements

We thank David Bremner for many helpful discussions and in particular for the elegant implementation
of name mangling. This work was partially supported by JSPS Kakenhi Grants 16H02785, 18H05291,
18K18027, 20H00579, 20H00595 .

References

[1] D. Avis. http://cgm.cs.mcgill.ca/~avis/C/lrs.html.

10

http://cgm.cs.mcgill.ca/~avis/C/lrs.html

[2] David Avis and Charles Jordan. mplrs: A scalable parallel vertex/facet enumeration code. Math-
ematical Programming Computation, 10(2):267–302, 2018.

[3] David Barina. Convergence verification of the Collatz problem. The Journal of Supercomputing,
2020.

[4] T. Christof and A. Loebel. http://porta.zib.de.

[5] William B. Hart. Fast library for number theory: an introduction. In Mathematical Software –
ICMS 2010, volume 6327 of Lecture Notes in Computer Science, pages 88–91, 2010.

[6] Jeffrey C. Lagarias. The 3x + 1 problem: An annotated bibliography (1963–1999) (sorted by
author). arXiv:math/0309224, 2003.

[7] Jeffrey C. Lagarias. The 3x + 1 problem: An annotated bibliography, II (2000-2009).
arXiv:math/0608208, 2006.

[8] Günter M. Ziegler. Lectures on polytopes. Springer, 1995.

A Single arithmetic code for repeated squaring

Listing 1: fixed.c

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 #include ” l r s a r i t h . h”
4

5 FILE ∗ l r s i f p ,∗ l r s o f p ;
6

7 void l r s o v e r f l o w (int parm) {
8 f p r i n t f (l r s o f p , ” over f l ow detec ted : h a l t i n g \n”) ;
9 e x i t (1) ;

10 }
11

12 int main (void) {
13 long i , k ;
14 l r s mp a , b ;
15 l r s m p i n i t (10 , s td in , s tdout) ;
16 l r s a l l o c m p (a) ; l r s a l l o c m p (b) ;
17 f s c a n f (l r s i f p , ”%ld ” ,&k) ;
18 itomp (k , b) ;
19 pmp(”” ,b) ;
20 for (i =1; i <=6; i++)
21 {
22 copy (a , b) ;
23 mulint (a , a , b) ;
24 pmp(”” ,b) ;
25 }
26 l r s c l e a r m p (a) ; l r s c l e a r m p (b) ;
27 f p r i n t f (l r s o f p , ”\n”) ;
28 return 0 ;
29 }

Listing 2: makefile

1 f i x e d : f i x e d . c l r s a r i t h . c l r s a r i t h . h l r s l o n g . c l r s l o n g . h lrsgmp . c lrsgmp . h lrsmp
. c lrsmp . h

2 $ (CC) −DLRSLONG −DSAFE −o f i x e d 1 l r s a r i t h . c f i x e d . c
3 $ (CC) −DLRSLONG −DB128 −DSAFE −o f i x e d 2 l r s a r i t h . c f i x e d . c
4 $ (CC) −DLRSLONG −o f ixed1n l r s a r i t h . c f i x e d . c

11

http://porta.zib.de

5 $ (CC) −DLRSLONG −DB128 −o f ixed2n l r s a r i t h . c f i x e d . c
6 $ (CC) −DMP −o fixedmp l r s a r i t h . c f i x e d . c
7 $ (CC) −DGMP −o fixedgmp l r s a r i t h . c f i x e d . c −lgmp

12

B Hybrid arithmetic code for repeated squaring

Listing 3: hybridlib.c

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 #include <setjmp . h>
4 #include ” l r s a r i t h . h”
5 #define run su f (run)
6

7 stat ic jmp buf buf1 ; /∗ re turn l o c a t i o n when o v e r f l o w i n g ∗/
8

9 int run (long k) {
10 long i ;
11 l r s mp a , b ;
12 l r s m p i n i t (0 , s td in , s tdout) ;
13 l r s a l l o c m p (a) ; l r s a l l o c m p (b) ;
14 itomp (k , b) ;
15 pmp(”” ,b) ;
16

17 i f (! setjmp (buf1)) { /∗ o v e r f l o w t e s t ∗/
18 for (i =1; i <=6; i++){
19 copy (a , b) ;
20 mulint (a , a , b) ;
21 pmp(”” ,b) ;
22 }
23 l r s c l e a r m p (a) ; l r s c l e a r m p (b) ;
24 return 0 ;
25 }
26 p r i n t f (” over f l ow detec ted : r e s t a r t i n g \n”) ;
27 l r s c l e a r m p (a) ; l r s c l e a r m p (b) ;
28 return 1 ;
29 }
30

31 void l r s o v e r f l o w (int parm) {
32 longjmp (buf1 , 1) ;
33 }
34

35 #i f de f ined (MA) && de f ined (LRSLONG)
36 #ifde f B128
37 int run2 (long k) { /∗ 128 b i t ∗/
38 #else
39 int run1 (long k) { /∗ 64 b i t ∗/
40 #endif
41 #else
42 int runmp(long k) { /∗ o t her a r i t h m e t i c ∗/
43 #endif
44

45 return (run (k)) ;
46 }

13

Listing 4: hybrid.h

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3

4 FILE ∗ l r s i f p ; /∗ input f i l e p o i n t e r ∗/
5 FILE ∗ l r s o f p ; /∗ output f i l e p o i n t e r ∗/
6

7 int run1 (long k) ;
8 int run2 (long k) ;
9 int runmp(long k) ;

Listing 5: hybrid.c

1 int main (void) {
2 long k ;
3

4 s can f (”%ld ” ,&k) ;
5

6 i f (run1 (k)) /∗ TRUE on 64 b i t o v e r f l o w ∗/
7 i f (run2 (k)) /∗ TRUE on 128 b i t o v e r f l o w ∗/
8 runmp(k) ;
9

10 p r i n t f (”\n”) ;
11 return 0 ;
12 }

Listing 6: makefile

1 HOBJ=l r s l o n g 1 . o h yb r i d l i b1 . o l r s l o n g 2 . o lrsgmp . o h y br id l i b 2 . o hybridl ibgmp . o
2

3 hybrid : hybrid . c l r s l o n g . c l r s l o n g . h lrsgmp . c lrsgmp . h h y b r i d l i b . c hybrid . h
l r s a r i t h . c

4 $ (CC) −DMA −DSAFE −DLRSLONG −c −o l r s l o n g 1 . o l r s a r i t h . c
5 $ (CC) −DMA −DB128 −DSAFE −DLRSLONG −c −o l r s l o n g 2 . o l r s a r i t h . c
6 $ (CC) −DMA −DGMP −c −o lrsgmp . o l r s a r i t h . c
7 $ (CC) −DMA −DSAFE −DLRSLONG −c −o hy b r i d l i b1 . o h y b r i d l i b . c
8 $ (CC) −DMA −DB128 −DSAFE −DLRSLONG −c −o hy br i d l i b2 . o h y b r i d l i b . c
9 $ (CC) −DMA −DGMP −c −o hybridl ibgmp . o h y b r i d l i b . c

10

11 $ (CC) −DMA −DLRSLONG −DSAFE −o hybrid ${HOBJ} hybrid . c −lgmp

14

	1 Introduction
	1.1 Related work
	1.2 Organization of the paper

	2 Fixed arithmetic
	2.1 Definitions and overflow handling
	2.2 Fixed precision performance

	3 Hybrid arithmetic
	3.1 Combining fixed arithmetic packages
	3.2 Hybrid performance

	4 Vertex/facet enumeration problems
	4.1 Background
	4.2 Hybrid mplrs
	4.3 Experimental setup
	4.4 Comparison of arithmetic packages

	5 Conclusion
	A Single arithmetic code for repeated squaring
	B Hybrid arithmetic code for repeated squaring

